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e Coordinate frames and barycentric frames
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Discontinuities

e Basis polynomials
e Multiple segments

e Basis splines

Continuities

e Combining basis splines for smoothness

e Curves with basis splines
B-Splines

e General segmentation and smoothness

e Knots and evaluation
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Constructing Curve Segments

Linear blend:

e Line segment from an affine combination of points

Py(t) = (1 —t)Py + tPy

t (1-t1)
r-—-—--- ==~ """~"==-- 1
O o7 O
I:)O PO Pl
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Quadratic blend:

e Quadratic segment from an affine combination of line segments

Py(t) = (1—t)Py+tP
Pl(t) = (1—t)P +tP,
Pi(t) = (1—t)Py(t) +tP)(t)
Pl
1
I:)1
pl >
0 PO
0 2
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Cubic blend:

e Cubic segment from an affine combination of quadratic segments

P(t) = (1—t)Py+tP
Pl(t) = (1—t)P +tP,
Pi(t) = (1—t)Py(t) +tP)(t)
P(t) = (1—t)P +tP,
Py(t) = (1—t)P,+1tP;
Pi(t) = (1—1t)P/(t)+tP,(t)
Py(t) = (1—1t)P;(t) +tPi(t)

e The pattern should be evident for higher degrees
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Geometric view (deCasteljau Algorithm):

Join the points P; by line segments

Join the t : (1 — t) points of those line segments by line
segments

Repeat dasS necessary

The t : (1 —t) point on the final line segment is a point on the
curve

The final line segment is tangent to the curve at ¢
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Expanding Terms (Basis Polynomials):

e The original points appear as coefficients of Bernstein
polynomials

P)(t) = Pyl

P, (t) = (1 —¢)Py + tP,

PJ(t) = (1 —t)2Py + 2(1 — t)tP, + t° Py

P)(t) = (1 —1t)°Py+3(1 —t)%P, +3(1 — t)t>P, + 3P
Pl (t) = > im0 DBl (t)

where

Bl'(t) = n (1—¢)" "t = ( " ) (1 —¢)" 't

(n — )!d!

e The Bernstein polynomials of degree n form a basis for the
space of all degree-n polynomials
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Recursive evaluation schemes:

e To obtain curve points:

— Start with given points and form successive, pairwise, affine
combinations

P’ = P

1

P/ = (1-t)P/7'+ tPg:

— The generated points Pij are the deCasteljau points
e To obtain basis polynomials:

— Start with 1 and form successive, pairwise, affine
combinations

By, = 1
B = (1—-t)B/"'+tB ]

where B. = 0 when r < Oorr > s
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Recursive triangle diagrams (upward):

Computing deCasteljau points

e Each node gets the affine combination of the two nodes entering
from below
— Leaf nodes have the value of their respective points

P} =(1—t)P +tP,

e Each node gets the sum of the path products entering from
below

P? = P{(1—t)(1 —t)+ P2t(1 —t) + P;(1 —t)t + Ptt

Pl = (1—1t)°P, +2(1 — t)tP; + t°P;
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Recursive triangle diagrams (downward):

Computing Bernstein (basis) polynomials

e Each node gets the affine combination of the two nodes entering
from above

— Root node has value 1
— For other nodes, missing entries above count as zero

e Each node gets the sum of the path products entering from
above

B =t(1—t)(1—t)+ (1 —t)t(1 —t) + (1 —t)t(1 —t)t

PP =3(1 —t)%t

11
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Bernstein Basis Functions

Bernstein Polynomial Properties:

Partition of Unity: >, BI'(t) =1

Proof:
1 = (t+1—-1t)"
— §;<f3>(y—ﬂ”%i

- B
i=0
Nonnegativity: B'(t) > 0, for t € [0, 1]
(7) > 0
i

t > 0foro<t<1
(1—t) > 0for0<t<1

Proof:

13
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Recurrence: By(t) = 1and B]'(t) = (1—t)B'(t)+ B!\(t)
Proof:
Bi(t) = ([)ta-o""
_ (?‘1) £(1— )" 4 (:"__11) (1 —¢)""
= (1—1t) (?‘1) t'(1— )"V 4
t (”_1) £ (1 — )G

1—1

= (1—=8)B (t) + tB;" (t)
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Derivatives: < B! (t) = n (B} (t) — B '(t))

Proof:
SBr) = (1)
_ %z!(nn: iy _ gy
- S
i!(:(; i_i)!l)!ti(l — )"

= o (Bl - B (1)
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Bézier Splines

Bézier Curve Segments and their Properties

Definition:

e A degree n (order n + 1) Bézier curve segment is

P(t) = >  PB](t)
i=0
where the P; are k-dimensional control points.

Convex Hull:
S0 BI(t) = 1, BI(t) > 0for t € [0, 1]
— P(t) is a convex combination of the P; for t € [0, 1]

— P(t) lies within convex hull of P; for ¢t € [0, 1]

16
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Affine Invariance:

e A Bézier curve is an affine combination of its control points

e Any affine transformation of a curve is the curve of the
transformed control points

T (Z R-B?(t)) = S T(P)BI()

e This property does not hold for projective transformations!

Interpolation:

Bi(0) = 1,BI(1) = 1, i = 0"B(t) = 1, BA(t) > 0
fort € [0, 1]

— B*(0) =0ifi#0,B*1) =0ifi #n

— P(0) = Py, P(1) = P,

17
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Derivatives:
£B(t) = n (B]'(t) — B '(t))

— P'(0) = n(Py — Py), P'(1) = n(Pn — Pu_1)

O

Smoothly Joined Segments (G*):

e lLet P,_1, P, be the last two control points of one segment

e Let QQg, Q1 be the first two control points of the next segment

Pn — QO
(Pn— Ppo1) = B(Q1— Qo) for some 3 > 0
I:)n-l F;]
Q

18
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Recurrence, Subdivision:
BI(t) = (1 — t)By ' + tB(¢)

— deCasteljau’s algorithm:

P(t) = P
Pi(t) = (1—t)P'(t) + )P
P’ = P

1

Use to evaluate point at ¢, or subdivide into two new curves:

o P(?, Pol, ... Py’ are the control points for the left half
° PT?, P!

n—1

... By are the control points for the right half

19
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Matrix View:

e Expand each Bernstein polynomial in powers of ¢
e Represent each expansion as the column of a matrix

e Quadratic example:
(1 —¢)°Py+2(1 — t)tP, + t° Py

= (1 — 2t + Py + (2t — 2¢°) Py + (2t — 2¢°) P, + t° Py

1 0 0 Py
=[te]| =2 2 0 Py
1 -2 1 P,

In matrix format:
P(t) =T MprP

— T(t)" = [1 t t?] is the monomial basis

— Pr = MprP is a matrix containing the coefficients of the
polynomials for each dimension of P(t)

— M pr is a change of basis matrix that converts a specification
P of P(t) relative to the Bernstein basis to one relative to
the monomial basis
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Tensor Product Patches

Tensor Product Patches:

e The control polygon is the polygonal mesh with vertices P; ;

e Thepatch basis functions are products of curve basis functions

P(s,t) = Z Z P; ;B (s,t)

i=0 ;=0

where
B, (s,t) = B; (s)B;(t)

Scan in image.

22
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Properties:

e Patch basis functions sume to one

> > Bi(s)Bj(t)=1

i=0 j=0
Patch basis functions are nonnegative on [0, 1] X [0, 1]
B(s)Bj(t) > 0for0 <s,t <1

—> Surface patch is in the convex hull of the control points

— Surface patch is affinely invariant
(Transform the patch by transforming the control points)

Subdivision, Recursion, Evaluation:

e As for curves in each variable separately and independently

e Tangent plane is not produced!
— Normals must be computed from partial derivatives

23
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Partial Derivatives:

e Ordinary derivative in each variable separately’:

TPt = D3 P [£BI6)] B

1=0 7=0

T pn = > rsie 2850

1=0 7=0

Each of the above is a tangent vector in a parametric direction

Surface is regular at each (s,t) where these two vectors are
linearly independent

The (unnormalized) surface normal is given at any regular point
by

0 0
—P(s,t —P(s,t

(the sign dictates what is the outward pointing normal)

In particular, the cross-boundary tangent is given by
(e.g., for the s = 0 boundary):

ny > (Pi;— Poj)B}(t)

i=0 ;=0

(and similarly for the other boundaries)
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Smoothly Joined Patches:

e Can be achieved by ensuring that

(Pijn — Pin—1) = B(Qs,1 — Q,0) for 8 > 0

(and correspondingly for other boundaries)

Pl 22
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Rendering:
e Divide up into polygons:
1. By stepping
s = 0,0,29,...,1

t = 1,~v,2v,...,1

and joining up sides and diagonals to produce a triangular
mesh
2. By subdividing and rendering the control polygon

26
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Barycentric Coordinates (optional)

Coordinate Frames:

e Vector oriented; derived from linear space basis

e One point and n vectors in space of dimension:
Dn, VOy + o+ 3 Up—1
— Vectors vU; are linearly independent

Barycentric Frames:

e Point oriented
e n + 1 points in space of dimension N : Dy, ..., D,
— Points are in general position
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Frames of Both Types Are Equivalent

e Express each ¥; as D; — D,, for D; = D,, + v;

n—1
1=0
n—1
=0
n—1 n—1
= (1- Zpi)Dn + ZpiDi
1=0 1=0

n—1 n—1
= E szz where E w; = 1
1=0 1=0

e And, of course, conversely

28
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Triangular Patches (optional)

deCasteljau Revisited Barycentrically:
e Linear blend expressed in barycentric terms
(1 — t)P() -+ tPl = ’I"P() -+ tPl where r -+ t=1

e Higher powers and a symmetric form of the Bernstein
polynomials:

P(t) = ZP (Z'(n_z)'> (1—t)" "t

> nl
= 1+73=mn Pi< )tr wherer +t =1
i>0,7>0 ug!

>
— ’L—I—j =N PijB?j(r, t)
1 >0,7 20

30
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e Examples

0
By, (r,t) = 1
By, (r,t), Bjy(r,t) = rt
2 2 2 2 2
Bo2(7°7 t), B11(7°7 t), Bzo("“, t) = r7,2rt,t
Bg3(7“, t)? Bi}2(r7 t)7 Bgl(ra t), Bg’o(’r, t) = 7’3, 37"2t, 37"t2, t3

Surfaces — Barycentric Blends on Triangles:

e Formulas

P(r,s,t) = Z PijkBZ-k(r,s,t)
t+73+k=n
120,75 20,k>0
n! .
n . AT B Y.
B (r,s,t) = i!j!k!r st

31
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Triangular deCasteljau:

Join adjacently indexed P;;; by triangles

Find r : s : t barycentric point in each triangle

Join adjacent points by triangles

Repeat

— Final point is the surface point P(r, s, t)

— final triangle is tangent to the surface at P(r, s, t)

Triangle up/down schemes become tretrahedral up/down
schemes

Scan in image.

THE UNIVERSITY OF TEXAS AT AUSTIN
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Properties:

e Each boundary curve is a Bézier curve

e Patches will be joined smoothly if pairs of boundary triangles
are planar as shown

P11

Pi2o

Fyos

33
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Discontinuities in Splines

Bézier Discontinuities:

e Two Bézier segments can be completely disjoint

e Two segments join if they share last/first control point

P .P3
o1
/// \\/\a-
: E
0
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Common Parameterization and Blending Functions

e Joined curves can be given common parameterization
— Parameterize first segment with 0 < t < 1
— Parameterize nest segment with 1 < ¢t < 2, etc.

e Look at blending/basis polynomials under this parameterization

— Combine those for common P; into a single piecewise
polynomial

B, B, B, B, B,

THE UNIVERSITY OF TEXAS AT AUSTIN
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Combined Curve Segments

e Curveis P(t) = PoBo(t)—|—P1B1(t)—|—Png(t)-|—Png(t)—|—
P4B4(t), where

Bo(t) = {él_t)2 (1)§§2;
Bi(t) = {3“1‘” ?éi;é
By(t) = {7222_15)2 2§i§;
Bs(t) = {g(g_t)(t_l) 2§z2;
By(t) = {(()t—l)2 ?223
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Curve Discontinuities from Basis Discontinuities

e P, is scaled by By(t), which has a discontinuous derivative

e The corner in the curve results from this discontinuity

5

37
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Spline Continuity

Smoother Blending Functions:

e Can By(t),..., By(t) be replaced by smoother functions?
— Piecewise polynomialson 0 < ¢t < 2
— Continuous derivatives

e Yes, but we lose one degree of freedom

— Curve has no corner if segments share a common tangent
— Tangent is given by the chords Py Ps, P> Ps
— An equation constrains Py, P>, P
_ _ P1+P3
Py — P, =P, — P = P, =—5—>

e This equation leads to combinations:

PyBo(t) + Pi(Bi(t) + 1Ba(t)) + P3 (3Ba(t) + Bs(t)) +
PyBa(t)

38
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Spline Basis:

e Combined functions form a smoother spline basis

oy
e}
VY
~
N—"
I

Bo(t)

Bi(t) = (Bl(t)+%B2(t)>

By(t) = (%BQ(t)+B3(t)>

By(t)

ol

W
"
~

|

Bo

\\
N
\
\
l
nJHI
/
’
p
.
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Smoother Curves:

e Control points used with this basis produce smoother curves.

P
P B

40
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B-Splines

General B-Splines:

e Nonuniform B-splines (NUBS) generalize this construction

e A B-spline, Bf(t), is a piecewise polynomial:

THE UNIVERSITY OF TEXAS AT AUSTIN

each of its segments is of degree < d

it is defined for all ¢

its segmentation is given by knotst = tg < t; < .- < tn
it is zero for T" < T and T" > T51 411

it may have a discontinuity in its d — k + 1 derivative at
t; € {ti, Ce ey ti—i—d—l—l}, if t; has multiplicity k

it is nonnegative for t; < t < t;+441

Bfl(t) + -+ Bita(t) = 1 for tjpq < t < titqyr1, and
all other B;.i(t) are zero on this interval

Bézier blending functions are the special case where all knots
have multiplicity d 4+ 1
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Example (Quadratic):

i Lo tiss s

42
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Evaluation:

e There is an efficient, recursive evaluation scheme for any curve
point
e It generalizes the triangle scheme (deCasteljau) for Bézier curves

e Example (for cubics and ;13 < t < t;14):

"ty

lisg 1

t

livg 1 U "t lisg 1

gt U " liyg

-m tiva tivr Gisa” b m tivs™ tiv2 Lus™ tiso @ tivg™ ti+3 ive™ ti+

Pi Pi+ 1 I:i)+2 I:?+3

Ligg t t -t et U " Tgp
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