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BSP trees have been shown to provide an effective repre- 
sentation of  polyhedra through the use of  spatial subdivision, 
and are an alternative to the topologically based b-reps. While 
bsp tree algorithms are known for a number of important opera- 
tions, such as rendering, no previous work on bsp trees has 
provided the capability o f  performing boolean set operations 
between two objects represented by bsp trees, i.e. there has 
been no closed boolean algebra when using bsp trees. This pa- 
per presents the algorithms required to perform such opera- 
tions. In doing so, a distinction is made between the semantics 
of  polyhedra and the more fundamental mechanism of spatial 
partitioning. Given a partitioning of a space, a particular se- 
mantics is induced on the space by associating attributes re- 
quired by the desired semantics with the cells of the partition- 
ing. So, for example, polyhedra are obtained simply by associ- 
ating a boolean attribute with each cell. Set operations on 
polyhedra are then constructed on top of the operation of  merg- 
ing spatial  part i t ionings.  We present then the algorithm for 
merging two bsp trees independent of  any attributes/semantics, 
and then follow this by the additional algorithmic considera- 
tions needed to provide set operations on polyhedra. The result 
is a simple and numerically robust algorithm for set opera- 
tions. 

I n t r o d u c t i o n  

Methods for representing geometric objects is an issue of  con- 
siderable importance to discipl ines dealing with geometric 
computation. Several different representations, such as bound- 
ary-representations (b-reps), octrees, and esg trees, are cur- 
rently in use, and a number of new approaches are being ex- 
plored by various researchers. As in all computation, the data 
representat ion/structure determines the algori thms that are 
needed to provide the operations associated with any semantic 
domain. And it is the efficiency and simplicity of the algo- 
rithms operating on the data structures that determines the at- 
tractiveness of a particular representation. 
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Constructive solid geometry introduced the explicit  use of 
the paradigm of  constructing complex objects from combina- 
tions of  other usually simpler  objects, This methodology is 
built upon the mathematies of  set theoretic expressions. These 
expressions are analogous to parenthesized boolean expres- 
sions, but the variables are instead subsets of  a Euclidean D-di- 
mensional space and the operations include, in addition to the 
analogous regularized boolean set operations, affine transfor- 
mations. Instancing, i.e. the utilization of named sub-expres- 
sions, is also a part of  this method. 

These expressions define a value and they can, at least in 
principal, be evaluated to produce this value. For example, ray- 
casting evaluates the expressions in a 1D sub-domain of the 
typically 3D domain, and so solves a simpler problem: classify 
a line with respect to the expression. When the operands are re- 
stricted to polyhedra and are represented by b-reps, then any 
number of algorithms are known for evaluating such an expres- 
sion (see for example [Mantyla 88] or [Hoffman 89]). 

The methodology underlying b-reps is that of  the direct rep- 
resentation of  the topology of a polyhedral  surface/boundary. 
The topological approach requires the decomposit ion of  a D- 
space polytope into connected components of  all dimensions 

d, 0 _< d _< D, and explicitly encodes the cormeetivity/incidence 
among these components .  Thus, the methodology  dist in- 

guishes for every d, 0 < d <_ D, affine subspaces containing 
sets of d-manifolds (shells), preferably with their relative con- 
tainment (which shells are inside which other shells), along 
with their connected set of  d-1 dimensional boundary elements 
and the connectivity of these to other elements outside of their 
affine subspace, and so on recursively in dimension. 

B-reps, while widely used, possess a number of inherent dif- 
ficulties in terms of their representational power. The reliance 
on the concept of manifolds is at odds with the need for permit- 
ting non-manifold boundaries, i.e. the presence of  regions on 
the boundary whose neighborhood is not homeomorphie to an 
g-ball of some affine subspace. (However, this problem is fix- 
able.) A second is the inability to represent sets whose bound- 
ary is unbounded, such as a linear halfspace. 

On the algorithmic side, performing set operations with b- 
reps requires explicit detection of the co-incidence of all C( D, 
2 ) combinations of  the variously dimensioned elements (e.g. 
face-face, face-edge, edge-vertex) along with some appropriate 
action for each. And the fundamental importance of incidence 
to the topological methodology exacerbates the already diffi- 
cult problem of numerical robustness. Additionally,  efficiency 
considerations necessitate some kind of spatial search struc- 
ture, one that is extrinsic to the representation and is typically 
an axis-aligned spatial decomposition. Therefore, it does not 
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transform with the representation and so must be reconstructed 
after each transformation. 

An alternative that has been evolving throughout the decade 
of the 80's is the binary space partitioning tree. The fundamen- 
tal methodology underlying bsp trees is spatial partitioning. 
Hyperplanes are used to recursively subdivide D-space to create 
a disjoint set of  D-dimensional cells. Each cell is then desig- 
nated as either in the interior of  the set or in the exterior. The 
boundary of  the set need not be represented explicitly as it is 
derivable from the cells. The representational power of linear 
bsp trees is the class of  linear sets 1, which includes l inear 
polytopes.  The methodology of  spatial part i t ioning ignores 
all topological properties of  the set, and so bsp tree algorithms 
treat all topologically distinct sets identically, nor is any dis- 
tinction made between convex and non-convex sets. Thus the 
entire representatibnal domain is treated uniformly, providing 
a considerable improvement  in the simplici ty of  the algo- 
rithms. In addition, the spatial search structure is intrinsic to 
the representation and so transforms with it. 

I. BSP Trees 

The most intuitive way to understand bsp trees is through the 
process that constructs them, and so we begin our introduction 
to bsp trees with an example. Figure 1 illustrates the construc- 
tion of  a bsp tree. One begins with a region of space r, chooses 
some hyperplane h that intersects r, and then uses h to induce a 

binary partitioning on r that yields two new regions: r.child" = 
r n h- and r.child + = r n h +, where h- and h + are the negative 
and positive open halfspaces of h respectively. Each of these 
unpartitioned children can in turn be partitioned, and so on, to 
produce a binary tree of  regions. 

r O 

Initial tree 
Initial region First binary New tree 

partitioning 

s 3 D \  

, , C  3 - - E  6 

Spatial partitioning Binary tree 

Figure 1 Constructing a bsp tree 

A bsp tree is then a hierarchical set of regions of a D-dimen- 
sion Euclidean space with a relation of parent-child defined on 

1 We have only studied bsp trees of finite size (as in number of 
nodes); but the concept can be extended to trees that are 
eountably infinite. 
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the set corresponding to "child formed by a binary partitioning 
of parent". The graph of the relation on the set is a binary tree. 
The process that builds bsp trees uses a single local operator, 
viz. binary partitioning, which provides  the construction: 
(region, hyperplane) -> (region-, region +, binary partitioner). 
A binary partitioner of a d-region R is any d-1 subset of R 

which partitions R into two disjoint subsets, R- and R +, such 
that any path between two points, p- ~ R- and p+ E R +, must 
intersect the binary partitioner. Recursively applying this op- 
erator produces a bsp tree. 

While  the bsp tree is a geometric entity whereas its binary 
tree is combinatorial, the language of binary trees is often use- 
ful for describing certain aspects of the bsp tree. By definition, 
there is an isomorphism between bsp tree regions and binary 
tree nodes, and we denote the region of a node V as V.region 
and conversely the node of a region R as R.node. Each internal 
node V has an associated binary part i t ioner that part i t ions 
V.region, while each leaf node corresponds to unpartitioned re- 
gion. These unpartitioned regions are called cells. (In figure 1, 
the cells are labeled with numbers.) Each edge of  the binary txee 
corresponds to a halfspace: a left edge to the negative halfspace 
of the parent node's hyperplane and a right edge to the positive 
halfspace. We can then define any region R as the intersection 
of open halfspaces corresponding to edges on the path from the 

root to R.node. (In figure 1, cell 3 = A" n B+.) Thus, if  the ini- 
tial region, typically all of  D-space, is a convex and open set, 
it follows that all of the regions of  the tree are convex and 
open sets. 

The binary partitioner of a partitioned region R, denoted as 
R.bp, is comprised of a hyperplane, bp.hp, a sub-hyperplane 
(or sub-hp), bp.shp, which is the intersection of  R.bp.hp with 

R, and its two halfspaces bp.hs- and bp.hs +. Every region R is 
the root region of some bsp tree T, denoted as R.tree, and the 
symmetrical relation is denoted as T.root_region (to unambiva- 
lently denote the set of points corresponding to T.root_region, 
as opposed  to the data  s t ructure,  we may also use 
T. root_region.domain) .  The two subtrees  are denoted  as 
T . n e g _ s u b t r e e  and  T . p o s _ s u b t r e e  l y i n g  in  

T. root  reg ion .bp .hs-  and T.root_region.bp.hs + respectively.  
The set of cells corresponding to the leaves of T together with 
the sub-hyperplanes of  its internal nodes forms a partitioning 
of T.root region, and is denoted as T.partitioning. 

Review of  p r e v i o u s  w o r k  

The original context in which the bsp tree was developed is 
that of rendering. The linearity of both planes and viewing rays 
means that if a ray intersects a plane it does so at only one 
point. And so the plane divides the ray into near and far sec- 
tions. This permits inducing a visibil i ty priority ordering on 
the three subspaces formed by the plane: near halfspace -> 
plane -> far halfspace. Given a bsp tree T, determining this 
ordering at every node of the tree in a reeursive manner pro- 
vides a total ordering of the elements of  T.parti t ioning (see 
[Schumaker et al 69] or [Sutherland, Sproull, Schumaker 74], 
and [Fuchs, Kedem, Naylor 80] or [Naylor 81]). 

These techniques were extended to ray-tracing polyhedra and 
non-linear csg-dags in [Naylor and Thibault  86]. This work led 
to the association of  attributes at the cells and the overt idea of 
bsp trees as a representation of polytopes.  In [Thibault and 
Naylor 87] and [Thibault 87], several new algorithms were in- 
troduced. Conversation from a b-rep to a bsp tree and point 
classif ication algorithms were derived by extending earlier 
very similar algorithms. The work with csg-dags led to an algo- 
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rithrn for evaluating a csg expression in which the primitive 
objects are polyhedra each represented by a b-rep, to yield a 
single bsp tree corresponding to the expression's value. An 
earlier idea of  inserting moving objects into a bsp tree led to an 
algorithm for evaluating a polyhedral set operation between a 
bsp tree and a b-rep to yield a bsp tree, i.e. bspt <op> b-rep -> 
bspt. Finally, algorithms were given for generating the poly- 
hedral boundary as either a set of  convex polygons represented 
by a list of  vertices or as a set of  edges. 

In [Bloomberg 86], very similar ideas are developed, and an 
algorithm for bspt <op> bspt -> brep is given which classifies 
faces of one tree with respect to the other; but no subtrees are 
classified atomically. Even more recent work on bsp trees has 
provided a means of  generating shadows for polyhedral models 
[Chin and Feiner 89] , interactive object design and view vol- 
ume clipping [Naylor 90a], radiosity [Fussell and Campbell  
90], as well as algori thms with asymptot ica l ly  improved 
bounds for constructing bsp trees from a set of  faces in 3D and 
edges in 2D (i.e. conversion from b-rep to bsp tree) [Paterson 
and Yao 89] and [Paterson and Yao 90]. In [Torres 90], a new 
treatment is given of  the original problems addressed in 
[Schumaker et al 69] of constructing an inter-object bsp tree of 
moving objects, where the individual objects are represented as 
bsp trees. 

Geometr ic  model  as at tr ibutes  on a space 

The motivation for inducing a partitioning on a space S is to 
provide a means of  distinguishing points in S through the as- 
sociation of arbitrary attributes with any of  its points; that is 
to provide the mapping Model( X 6 S ) -> Attributes. We use 
the bsp tree to implement this general function. We associate 
with each element of  our partitionings (cells and sub-hps) a set 
of  C O or higher continuous functions whose domain is consid- 
ered to be restricted to that element. This provides a quite gen- 
eral mechanism for constructing complex discontinuous func- 
tions on S that are piecewise C 0. However, we will restrict our 
attention in this paper to the problem of  represent regular sets, 
which requires  the s imples t  poss ib le  set of  at tr ibutes,  
Membership : [ In, Out }. Nonetheless, the principal result of  
this paper is the merging of  two independent bsp tree spatial 
partit ionings both defined on S. This merging operation is 
completely independent  of  the semantics of any attribute 
space, and requires only the ability to determine whether the at- 
tribute space of two elements can be represented by a single at- 
tribute space. Set operations are then constructed on top of this 
merging operation. 

II. Merging Trees 

The most primitive operation then is merging two spatial par- 
titionings : given partitionings of the same space, Pl and P2, 
form a new partitioning P3 = P1 + P2 from the pairwise inter- 

section of the ceils of  P1 andP2 ,  i.e. a c e l l  c3 e P3 ¢=~ ] 

c 1 ~ P1 ,  c 2 ~ P2 ,  s . t .  c3 = e l  n c2 ,  c3 ~ 0 .  
Merging can be illustrated by simply overlaying the two parti- 
tionings on top of  each other, as shown in figure 2.1. 

We will  then merge two trees T1 + T2 -> T3, s.t. 
T 3 . p a r t i t i o n i n g  = T l . p a r t i t i o n i n g  + T 2 . p a r t i t i o n i n g .  
However, since bsp trees are a hierarchy of regions, we will 
need to do somewhat more than merely merge their partition- 
ings. Nonetheless, the algorithm to perform merging of  bsp 
trees is fairly simple and recursive. 

T1 . p a r t i t i o n i n g  T 2 . p a r t i t i o n i n g  

Tl.partitioning + T2.partitioning 

Figure  2.1 M e r g i n g  p a r t i t i o n i n g s  

As with most bsp tree algorithms, we can understanding lree 
merging in terms of  the paradigm of inserting an object into a 
tree; in this case, the object is a tree as well. (Below, we will re- 
lax this asymmetrical view). As always, we need the two basic 
bsp tree operations: performing a binary parti t ioning of the 
object if at a partitioning node and executing a cell <op> object 
when at a leaf. 

Performing a binary partitioning of  a bsp tree by the binary 
parti t ioner of a node provides ( Bspt, Bp ) -> ( in.NegHs, 
inPosHs : Bspt ); that is, a tree is split by a binary partitioner 

to yield two trees T- = T n bp.hs" and T + = T n bp.hs +. A Cell 
<op> Tree routine is imported by the tree merging routine, and 
it is this routine that embodies the semantics of  the applica- 
tion. Its function is to merge the single set of attributes of  a 
cell with the attributes of a tree. When the semantics is that of 
set operations on polyhedra, the spatial structure of  the result 
will be either that of  the cell or the tree (the specifics are dis- 
cussed below in section V). 

Given these two operations, the algorithm partitions one 
tree, say T2, by the binary partitioner at the root of the other, 

T1. The two resulting trees, T2" and T2 +, are defined on exactly 
the same reg ion  ( d o m a i n )  as T l . n e g _ s u b t r e e  and 
Tl .pos_subtree  respectively. Thus, we have created two new 
sub-problems, each identical in form to the original problem: 
merge two trees each of which partit ion the same subspace. 
When a cell is reached, the semantics-dependent Cell <op> Tree 
routine is called. The basic algorithm is given in Figure 2.2. 
An illustration of  tree merging appears in Figure 2.3. As one 
can see, each cell of T1 is replaced with that subset of T2 that 
lies in that cell. 

While figure 2.2 provides the essentials of the merging al- 
gorithm, there remain a number of  secondary issues. The first 
of these arises from the fact that the algorithm is completely 
symmetric with respect to its two operands, so one has the op- 
tion of  choosing at each recursive invocation of Merge_Bspt0, 
whether to partition the first tree by the second or the second 
by the first. A method Choose_PartitionerO can be provided to 
Merge Bspt0 for this purpose, and may enforce whatever pol- 
icy is appropriate for the current usage. (Note that since the 
merge operations may be used to provide a non-commutative 
operator, the order of the operands must be preserved by having 
two distinct CASEs, one with T1 as the partitioner and one for 
T2.) 
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Merge_Bspts : ( T1, T2 : Bspt ) -> Bspt 
t i p  

T y p e s  
PartltlonedBspt : ( inNegHs, inPosHs : Bspt ) 

I m p o r t s  
Merge_TreeWlth_Cell  : ( T1, T2 : Bspt ) -> Bspt 
Partltion_Bspt : ( Bspt, Bp ) -> PartitionedBspt 

D e f i n i t i o n  
IF TI. ls  a cell OR T2.is a cell  

THEN 
VAL := M e r g e _ T r e e _ W i t h _ C e l l (  T I ,  T2 ) 

E L S E  
Partltlon_Bspt( T2,  T l . r o o t _ r e g i o n . b p  ) -> 
VAL.neg subtree .-'- 

M e r g e _ B s p t s (  Tl .neg_subtree ,  
V A L . p o s _ s u b t r e e : =  

Merge_Bspts(  T l .pos_subtree ,  
VAL.root_region := Tl . root_reg ion  

END If 
RETURN VAL 

END Merge_Bspts 

F i g u r e  2.2 

User defined semantics. 

T 2 _ p a r t i t i o n e d  

T2_part i t ioned. lnNegHs ) 

T 2 _ p a r t i t i o n e d . i n P o s H s  ) 

M e r g i n g  BSP T r e e s  A l g o r i t h m  

D / A \  

"!"1 

~t_ Y 

T 2  

X 
- / \  

/N 
/ \  

f 

T1 + T2 

Figure 2,3 

Secondly, it may be necessary to perform merging of  at- 
tributes in the sub-hp of the bp that is used as the partitioner. 
This can be handled by a Merge_Bp_Attributes0 method. For 
representing polyhedra,  these attributes are the faces of the 
polyhedra and the requisite routines are discussed below in sec- 
tion VI. 

Finally, it is desirable to perform condensat ion .  When the 
attributes defined on Tree.root_region.domain are homoge- 
neous, there is no reason to maintain a partitioning of the do- 
main, and so we will condense the tree into a single cell. Under 
the recursive assumption that the two subtrees are already con- 
densed, determining homogeneity requires first that they both 
be singular, i.e. comprised of  a single node, and then that their 
attributes be identical. If attributes defined on the domain of the 
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~ A ~  t3 

/ ~,,,, ~X\  / X  /Yx 

M e r g i n g  two t r ees  

binary partitioner are independent of those of  the subtree, then 
this subspace must be taken into account as well when deter- 
mining homogeneity.  Note that in the case of  polyhedra,  
binary partitioner attributes, i.e. the faces of the polyhedra, are 
not independent; they are a function of  their neighborhood of 
cei ls .  

III. Binary Part i t ioning of  a BSP Tree  

We now address the problem of partitioning a bsp tree. Given a 
bsp tree T and a binary partitioner P defined on the same region 
of space, we want to form two trees, T- and T + such that T- = T 
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n P.hs" and T + = T ~ P.hs +, where Regions( T- ) =- { r- I r- = r 

n P.hs ' ,  r ~ Regions( T ), and r" ~ ~ } and similarly for 

Regions( T + ). 
To compute the two trees resulting from this operation, we 

will once again use the notion of  inserting a geometric entity 
into the tree; in this ease, the entity is a binary partitioner. 
This insertion process will identify which regions of T lie en- 
tirely in P.hs' ,  or entirely in P.hs +, or are intersected by P. 
(Note that insertion visits exactly those regions that are inter- 
sected by P). Accomplishing this requires determining the rela- 
tive spatial relationships of  two bp's and, when they intersect, 
splitting each bp by the hyperplane of the other. This opera- 
tion as well as the representation and generation of sub-hp's is 
discussed below in section IV. 

We have the usual form of first distinguishing between cell 
and partitioning nodes (singular and non-singular trees), and in 
the case of  a partitioning node, performing a binary partition- 
ing of  the inserted entity, i.e. the partitioning bp. Partitioning 
a cell is trivial: one needs only to return two copies of that cell. 
For a partitioning node, however, the issue is more involved. 

The first step is to perform a hi-partitioning between P and 
T's bp; that is, each bp is classified with respect to the other 
into the standard binary partitioning eases: 

Location : { InNegHs ,  InPosHs ,  InBoth ,  On }. 
Figure 3.1 shows the four possible geometric configurations. 
(Not shown are InNegHs/InPosHs, InPosHs/InPosHs, and On- 
parallel, since they have the same geometry but with one 
normal flipped.) The routine to perform this operation, Bi- 
Partition Bps0 is discussed in section IV. 

I n P o s H s / I n N e g H s  I n N e g H s / I n N e g H s  

On one side 

A n t i - p a r a l l e l  
I n B o t h  O n  

Figure 3.1 Spatial relat ionships  between two 
b inary  par t i t i oners  

While each of  the seven cases are treated separately, they all 
share the basic premise that any subtree containing the parti- 
tioner will need to be partitioned, and any that does not will 
need no modification. So, the case where P's location = 
InNegHs results in T.neg_subtree being partitioned but not 
T.pos_subtree, and InPosHs requires the opposite action, 
InBoth entails partitioning both, and On neither. The parts of 
subtrees resulting from this recursive partitioning are then 
pieced together to form the two trees which are the return values 
of  this operation. 

To see this more clearly, figure 3.2 attempts to illustrate 
what is taking place for the InBoth case in which four subtrees 
are generated, two from each subtree of T. During the process of 
inserting the bp P into the tree, one views the activity primar- 
ily in terms of the two halfspaees of  T.root region: we con- 
struct P- = P c~ T.hs- and P+ = P n T.hs +. In contrast, the re- 
suit, which is formed after any required subtree partitioning, is 
instead in terms of the halfspaces of P: T + = T n P.hs + and T- = 

T n P.hs-, which also entails computing T.bp- = T.bp n P.hs" 

and T.bp + = T.bp n P.hs +. So we have T- being formed out of 
pieces from both of T's two subtrees : 

T ' . n e g  s u b t r e e  := T ' s _ n e g _ s u b t r e e . i n N e g H s  
T ' . p o s _ s u h t r e e  := T ' s _ p o s _ s u b t r e e . l n N e g H s  
T ' . r o o t  r e g i o n . b p  := T ' s _ b p . i n N e g H s  

and similarly for T +. 

1 o o ~  P A ~  btree+ 

po, u.  T.bp 
~ l l ~ . ~ J .  bp ' ~ J s u  bt ree+ 

n e~.,u-b'l"~e n e g_s m.e.t"Fe e- 
Before Partitioning After Partitioning 

~ e ~  ~ t r e e  
pos_ ,~..~.,~.~ o o t. b p 
r o O n t ; ; _ ~  su btree 

VAL.inNegHs VAL.inPosHs 

Figure 3.2 Partit ioning a tree for InBoth case 

The cases in which P is entirely to one side of  T.bp is illus- 
trated in figure 3.3. There are four instances of  this case ob- 
tained by flipping normals; only one is shown here. For this 
case T.bp and T.neg_subtree remain intact; only T.pos_subtree 
is partitioned. The return values are: 

T ' . n e g _ s u b t r e e  := T . n e g _ s u b t r e e  
T ' . p o s _ s u h t r e e  := T ' s  p o s _ s u b t r e e . i n N e g H s  
T ' . r o o t  r eg ion .bp  := T .bp  

and 
T + := T ' s _ p o s _ s u h t r e e , i n P o s H s .  

Analogous assignments yield the other three instances. 
And finally, the third case of On requires no further parti- 

tioning and is given simply by selecting the appropriate 
subtrees: 

IF  normal s  are  paral le l  
THEN 

T" := T .neg_sub t ree  
T + := T .pos_sub t ree  

ELSE 
T + := T .neg_sub t ree  
T" := T.pos  sub t ree  

END 
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After Partitioning VAL.inNegHs VAL.inPosHs 

Figure 3.3 Partitioning a tree for InPosHs case 

It is important to note that any newly formed tree should 
have the condensation operation applied to it. While not 
needed for correctness, this can have a significant impact on 
performance. Consider figure 3.4 in which two complex 
objects are each contained inside their bounding simplex. If  
1"2 is inserted into T1, then T2 will be partitioned by X then Y 
and then Z. At this point, the fragment of  T2 inside Tl ' s  
bounding simplex will be condensed to a single out-cell, and 

T1 T2 
A /x~ / \ 

so the merging operation will be complete. Neither of  the 
subtrees inside the bounding simplices will be visited during 
this process. 

With the description of  Partition_Bspt complete, we make 
the following observation : to merge T1 with T2, we can insert 
T2 into T1, which entails the apparent paradox of inserting T1 
into T2 (actually, Tl ' s  bp's), but one piece at a time. 

l l ~ t l C t l  ~ t O . t ~  Binary t r e e s  

Y 

X 

After partitioning by X After partitioning by X, Y and Z 

Figure 3.4 Effect of condensing during partitioning 

I V .  R e p r e s e n t a t i o n  and part i t ioning o f  b i n a r y  
p a r t i t i o n e r s  

Partition Bspt relies upon Bi-Partition_Bps as the basic 
operation for determining the relative location of two Bps and 
for splitting them when the location is InBoth halfspaces. To 
provide this, we will need an explicit representation of the 
domain of  a bp, i.e. of  its sub-hp. This is unlike all previous 
operations on bsp trees, which require only hyperplane equa- 
tions and possibly a single "representative point" in the inte- 
rior of  a sub-hp (as in the set operations in [Thibault and 
Naylor 87]). Determining the respective locations of  two 
binary partitioners that partition the same region R can be 
based on computing their intersection : 

P l . shp  n P 2 . s h p  
= (R c~ P l .hp )  ~ (R c~ P 2 . h p )  

= P l . shp  c~ P 2 . h p .  

As the value of R must appear in the expression, we "encode" it 
into a sub-hp. However, when there is no intersection, we need 
to know in which halfspace the sub-hp lies, and in this case the 
routine that computes Pl.shp n P2.hp can tell us only the 
location of P1 with respect to P2.hp. Therefore, we will need to 
either use the representative point method or perform the 
complementary operation P2.shp n P l .hp .  

In the current implementation, a sub-hp is represented by a 
b-rep, and for the sake of  simplicity we restrict the embedding 
space to be 3-dimensional so that the sub-hps are polygons. 
Since sub-hps are convex, we can represent them using the 
simplest representation: a list of vertices. 

Given explicit sub-hps, the hi-partitioning operation is 
comprised of two applications of the same operation: partition 
a polygon by a plane. First Pl.shp is partitioned by P2.hp. We 
then performing the same operation for P2.shp with respect to 
P1 .hp 
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There is a one problem with using b-reps: sub-hps may be 
unbounded sets and b-reps can not represent unbounded sets 
( e . g .  the  s u b - h p  o f  T . r o o t _ r e g i o n . b p  w h e n  
T.root region.domain = 3-space is a hyperplane). Our solution 
to this is to represent 3-space as a bounded set, in particular as 
a box centered at the origin whose size is sufficiently large to 
accommodate the geometric model. We call this the universe- 
box. Since geometric models typically require no more than 7 
orders of  magnitude (e.g. from 1 rnm. to 1 km ), constructing a 
sufficiently large box is easily done without compromising 
numerical  robustness appreciably ,  especia l ly  when using 
double precision. 

To generate a representation of the sub-hp for the bp at 
some tree node v, we need to first construct a polygonal repre- 
sentation of  the bp's hp [Thibault 87]. This is done by project- 
ing one of the sides of the universe-box onto the hyperplane. 
The side chosen is the one whose the ratio of  its area to that of  
its projection is closest to unity. To achieve this, we choosing 
the side whose normal makes the smallest angle with that of  
the hyperplane. 

Given this "hyperplane as bounded polygon", we insert it 
into the txee, partitioning it at each node as usual, but follow- 
ing only the path that leads to the target node v. Thus, when 
our incipient sub-hp is InBoth, we retain only that half which 
is in the region of  the next node on the path. When we reach v, 
we have the desired sub-hp. Given any bsp tree containing no 
explicit sub-hp's, we will perform this operation for every node 
in the tree. (Rather than following a path from the root to the 
"current" node, we actually follow the path in the opposite 
direction, from the node to the root via parent links. This of 
course is a unique path and avoids the issue in the root-to-node 
order of knowing whether to follow the left or right child.) 

Anytime an affine transformation is applied to a tree, those 
sub-hp's which are "unbounded" will need to be recomputed 
since they will  no longer correspond to the intersection of 
their hyperplane with the universe-box. To facilitate this, each 
sub-hp is tagged to indicate whether it is unbounded, and if so, 
then regenerated when transformed. (If one uses the first D+I 
nodes to construct a bounding simplex, then only the first D 
sub-hps of this simplex are unbounded, i.e intersect the uni- 
verse box.) All  other sub-hp's can be transformed normally (by 
their vertices),  since they will remain bounded (under the 
assumption that the universe-box is sufficiently large). 

V.  Set  O p e r a t i o n s  o n  P o l y h e d r a  

Once the mechanism for merging spatial partitionings is in 
place, performing set operations on polyhedra is a relatively 
simple matter. The merging process recurses until one of  the 
two operands is homogeneous, i.e. is a cell, at which point we 
use a routine for merging cell attributes with those of some ar- 
bitrary tree (which may also be a cell). For set operations, this 
amounts to simply selecting either the cell or the tree, possi- 
bly complemented, as a function of  the membership attribute 
(Figure 5.1). Complementation of a tree involves simply the 
boolean complementation of the membership attribute. Figure 
5.2 illustrates the union of two bsp tree objects. 

In general, there is more to do than this. I f  there are other 
attributes, such as color, index of  refraction, density, or what- 
ever, these will need to be merged in some appropriate way as 
well. And so the above routine will need to be augmented to 
handle these. (Exactly how a particular attribute, such as color 
or transparency, should be merged in a union for instance, is 
currently an unsettled issue ). Note that this additional merging 
of  attributes may generate condensable subtrees. 

Ce l l _Se tOp_Tree :  ( T1, T2 : Bspt ) -> Bspt 
. o m  
° ° -  

VAL := 
I F  T l . l s  an  I n C e l l  

THEN 
C A S E  operat ion  

Union -> T1 
Intersect ion -> T2 
Difference -> Complement_Bs p t (  

S y m m e t r i c _ D i f f e r e n c e  -> 
C o m p l e m e n t _ B s p t (  T2  ) 

END 
E L S E I F  T l . i s  an  O u t C e l i  

THEN 
C A S E  operat ion  

Union -> T2 
Intersect ion  -> TI  
Difference -> T1 
S y m m e t r i c _ D i f f e r e n c e  -> T2 

END 

ELSE Repeat the above with T1 and T2 swapped. 

END C e l l _ S e t O p _ T r e e  

F i g u r e  5.1 C e l l _ S e t O p  T r e e  for  Set 
O p e r a t i o n s  

T2 ) 

VI .  P o l y h e d r a l  F a c e s  

While the above routine covers "attribute maintenance" for D- 
dimensional ceils, there remains the same issue for the D-1 
domains of the binary partitioners. For polyhedra,  the entire 
boundary of the set lies in the sub-hps, and while the boundary 
is wholly derivable from the D-cells, one may wish to explic- 
itly represent the set of boundary faces. The primary motiva- 
tion for doing so is to provide the input required by rendering 
systems that are based on polygon drawing. Using the bsp la'ee, 
one can provide a visibility priority ordering of  the faces to 
such a system. (Note that if instead one uses ray-tracing, the 
explicit representation of the boundary is unnecessary.) 

The boundary of a set is precisely those points whose t -  
neighborhood contains both interior and exterior points for all 

~. Thus, any subset of a sub-hp which has an in-cell on one side 
and an out-cell on the other will be on the boundary of  the 
polyhedra. In figure 6, we illustrate this idea by showing the 
boundary along with normals to the faces oriented to "point" to 
the exterior. Note that a sub-hp may contain more than one face 
and that the face orientations may be either paral lel  to the 
hyperplane orientation or anti-parallel. 

There are two possible approaches to face generation: either 
in every tree maintain faces as an intrinsic component of  the 
representation, or delay creation of  any faces until after an 
entire expression has been evaluated. Both approaches utilize a 
neighborhood operation that finds those cells in the neighbor- 
hood of a sub-hp, or equivalently, those cells whose boundary 
intersects a sub-hp. Consider any subtree T. If we insert the 
sub-hp at T.root_region into T.neg_subtree and then into 
T.pos subtree, the cells that are reached are precisely those in 
the sub-hp's neighborhood.  These  cells can be natural ly 
grouped into those in the posit ive subtree and those in the 
negative subtree. In addition, the search of a subtree will parti- 
tion the sub-hp into subsets that bound a single cell, and so 
will classify the sub-hp into "in" and "out" subsets. 
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Figure 5.2 Union of  two objects  
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Figure  6 Faces  of  a po lytope  

So with this, generation of  faces from a sub-hp is straight- 
forward [Thibault 87]. First, classify the sub-hp with respect to 
one of  T's subtrees, say the negative subtree, and then classify 
the resulting fragments with respect to the positive subtree. 
This yields fragments whose neighborhood is "homogeneous", 
i.e. is the same for all points in the fragment. With this infor- 
mation, we can generate the following classifications: 

n e g _ s u b t r e e  p o s _ s u b t r e e  c l a s s i f i c a t i o n  

i n  I n  i n  
i n  o u t  on (para l l e l )  
o u t  1 n on (ant i -paral le l )  
o u t  o u t  o u t  

plane. To generate all of the faces of  a tree that contains ex- 
plicit sub-hps but not explicit faces, one simply performs this 
neighborhood operation for every binary partitioner in the 
tree. 

The alternative is to maintain explicit faces at all times. So 
the result of a single set operation, T3 := T1 <op> T2, will 
entail generating all of the polyhedral faces of  "I"3 before 1"3 is 
used in any subsequent set operations. The objective is the 
same as before, to know the classification of all sub-hps, but 
the approach is less direct. Instead of classifying sub-hps, we 
employ the fact that the faces of T3 are a subset of those of T1 
and T2 combined, and in effect classify only the subsets of sub- 
hps "covered" by the faces. Note that the addition of  faces to 
the r e p r e s e n t a t i o n  wil l  r equ i re  e x t e n d i n g  both  
Complement_Bspt0 to swap parallel and anti-parallel face lists 
and Bi-Partition_Bp0 to partition any faces lying in a binary 
partitioner (this will be needed only if its sub-hp is InBoth, and 
thus the sub-hp provides a "convex hull" test for the faces). 

We will use a combination of two techniques already intro- 
duced: cell <op> tree and the neighborhood operation. The first 
is employed under two circumstances. When, during the recur- 
sire process of  tree merging, one of  the two arguments is a 
cell, the routine Cell_SetOp_Tree0 is called. This executes"the 
set operation by returning one of the two arguments (possibly 
complemented), and so implicitly classifies any faces in the 
process .  The second  c i r cums t ance  occurs  dur ing  
Partition_Bspt0 whenever the partitioning bp reaches a ceil. 
Its face fragments can then have the same rules applied to them. 
The only remaining case is that of on-faces. Whenever the On 
case in Partition_Bspt0 occurs we will need to use the neigh- 
borhood operation in leu of  direct classification by cells. On- 
faces from T1 (T2) will need to be classified with respect to the 
subtrees of  T2 (T1) (see [Thibault and Naylor 87] and [Naylor 
90a]). 

Retaining the o n  fragments, separated into parallel and 
anti-parallel lists, as part of  each binary partitioner provides 
the polyhedral faces. These faces, in fact, provide only a partial 
classification of  the partitioner's domain. There are two kinds 
of  on-regions, parallel and anti-parallel, but in-regions and 
out-regions are lumped together implicitly as n o t - o n .  Note that 
these face fragments are convex, since they are generated by 
the intersection of  halfspaces with their supporting hyper- 

V I I .  N u m e r i c a l  R o b u s t n e s s  

The occurrence of numerical errors due to finite arithmetic has 
been a nemesis of geometric computing since its inception. Its 
negative impact is greatest when the result of a numerical com- 
putation is used to discriminate logical alternatives in an algo- 
rithm. This can lead to arbitrarily "discontinuous" behavior; 
that is, the output of the algorithm can be highly sensitive to 
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small random perturbations of  the discriminators (the program 
may fail as well). While a number of  schemes have been devised 
to ameliorate the problem, the simplest  and most common is 

the use of  e- intervals .  For example, a discrimination based on 
whether a real value X is less than, greater than, or equal to 0 

can be replaced with one that determines whether a X < -e, X > 

+E, or in [ - e  +el respect ively.  More sophist icated methods 
enforce the intended semantics through a variety of schemes ( 
see e.g. [Karasiek 89]). 

The only numerical computation in this work is the parti- 
tioning of a polygon by a plane. Its primitive operation is the 
dot product of a point and a plane to determine the location of 
that point with respect to the plane. The specific algorithm we 
use assumes the semantics of planar, convex polygons, and we 
rely on the epsilon method just  described to attain robustness 
(to dampen the noise). Thus, the hyperplanes are in effect slabs 

2E thick. Any failure of  this technique is detected, but no 
correction strategy is evident other than using larger epsilons 
(this has been in use since [Naylor 81]). 

Unfortunately, this approach is insufficient to achieve a ro- 
bust bi-parti t ioning operation. In fact, larger epsilon exacer- 
bate the problem. Recall that there is a correlation between the 
location of the two bps: P l ' s  location = IrgBoth ¢=> P2's loca- 

tion = InBoth, and similarly On ¢=> On, and NotInBoth ¢0 
NotInBoth . Numerically this does not always hold. Our ap- 
proach is to detect inconsistencies and induce a mapping to one 
of the consistent result. When one location is InBoth and the 
other is InNegHs or InPosHs, we can force the the former to be 
either InNegHs or InPosHs by selecting the "half" which 
contain vertices farthest from the partitioning plane, or we can 
force the second to the InBoth condition by extracting "on" 
vertices. If  only one bp is On, we force it to a value consistent 
with the other bp. While  we believe that forcing semantic con- 
sistency is essential, our current choices for enforcing this are 
at this point only tentative. 

Numerical problems also affect attaining the semantics of 
the neighborhood operation. The method used for constructing 
bsp trees, defined in the continuum, implies that any sets lying 
in T.root region.bp.shp will not be On any sub-hp in either of 
T's subtrees; however, numerically this does not always hold. 
We employ the following defense.When a face fragment from 
node V is classified as On during the neighborhood operation at 
a descendant node U, we essentially treat that node as if it were 
contained in the face's sub-hp, i.e. as if  it did not exist. We 
then choose the subtree of U that is "not adjacent" to V, and 
continue the search. 

The combination of  these techniques has led to a robust set 
operation algorithm is the sense that the program will not fail 
and its output is in the neighborhood of  the ideal output over a 
large numerical range. For example, the standard test in which a 
set operation is performed between a cube and a second cube 
that has been rotated successively about each of its three prin- 

cipal axes by  an angle 0t has been executed successfully with 

= 10 -9 with e < 10 -11, including e = 0, using 64-bit floating 

point numbers. For 10 -9 > a > 10 -14, union continued to give 
the same results, while intersection and difference found some 
sides to be equivalent. As the value of  e approaches ix, more 
equiva lences  are  p roduced  unti l  the two objec ts  are 
computationally considered identical. 

While using a small  epsilon is interesting for testing the 
numerical  l imits,  large epsi lons are much more desirable 
(thicker hyperplanes) since they limit the size of  the smallest 
fragments and so avoid representing features far below any 

viewing resolution. An upper bound to the thickness is the 
point at which the affect of treating faces as being co-planar, 
when in fact they are not, becomes visible to a viewer. 

V I I I .  C o m p l e x i t y  

A simple worst case lower bound of  12( n 2 ) is obtained by not- 
ing that a checker board can be constructed from the symmetric 
difference of two trees, the first composed of  n horizontal  
strips with alternating boolean values and the second com- 
posed of n similiar vertical strips. 

As for an upper bound, the binary partitioner of each node 
of one tree is compared with the bp of each node of the second 
tree at most once, giving O( /T1 /* /T2 / )  or more simply O(n2). 
This analysis would be sufficient if each comparison was guar- 
anteed to be 0(1). However, it is possible for a sub-hp to be of 
size O(n), e.g. the base of  an n sided cone. If  this were true for 

every sub-hp, Partition Bspt could take O( n 2 ) per call, giv- 
ing a total time of O( n 3 ). 

To show that this is not the case, we first observe that each 
sub-hp vertex is compared to a hyperplane of the other tree at 
most once per node. So if we can show that the total number of 

sub-hp vertices is O(n), we will have O( n 2 ) total work. To 
prove this we use a r rangements  of  hyperp lanes .  An 
arrangement comprised of n d-cells can be represented by a bsp 
tree with an isomorphism from arrangement cells to bsp tree 
cells (leaf nodes) [Naylor 81]. Since it is known that the 
number of vertices of  an arrangement is O(n) and the sub-hp 
vertices are a subset of these, it can be shown that despite the 
fact that there are multiple instances of  some vertices, the 
number of sub-hp vertices of an arrangement is also O(n). Any 
bsp tree can be converted to its corresponding arrangement by 
rep lac ing  each ce l l / l ea f  with a tree represen t ing  the 
parti t ioning of that cell by all hyperplanes of the tree that 
intersect it. If we now remove any sub-hp separating two of the 
newly created cells, the new number of vertices will be: 

n * O ( 1 ) -  f l ( l )  < (n - l )  * O(1). 
If this is repeated ,  one node at a time, until the original tree is 
recreated, we will have O ( / T / )  vertices. We then have that 

merging bsp trees is worst case optimal t9( n 2 ). 
Of even greater interest is the expected case. This requires a 

definition of "good" trees, which we have developed but do not 
have space here to explore. If, for now, we simply take good to 
mean balanced, then merging two balanced trees of  size n can 
produce, at worst, a tree with maximum depth of  2 log n. Or 
more generally speaking, merging two good trees should yield 
a reasonably good tree. Note that the use of a bounding simplex 
as in figure 3.4 can lead to O(d) time to merge two trees whose 
bounding simplices are disjoint and the interior of  one simplex 
is not intersected by a sub-hp of the other. 

C o n c l u d i n g  r e m a r k s  

It is worth comparing this algorithm to the method in [Thibault 
and Naylor 87]. One of the two methods in that work performs a 
set operation between a bsp tree represented polyhedron and a 
b-rep represented polyhedron. The inserted entity is the b-rep 
polyhedron, represented as a list of polygons. In this work, we 
have instead a bsp tree, clearly a more complex structure than a 
list, although not necessari ly more complex than the more 
general b-rep structure as a hierarchy of  lists (not used in 
[Thibault and Naylor 87]). However, there are at least two ways 
in which one gains from the using a bsp tree. 
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The first advantage arises from the efficiency of a hierarchi- 
cal search structure: entire subtrees can be classified without 
examining their contents. In the average case, this can lead to 
O( log n ) behavior instead of O( n ). The second is algorithmic 
simplicity. Besides the obvious advantage of having only the 
bsp tree data type to deal with, it is difficult to determine with a 
b-rep the relative spatial classification of some other entity. 
The algorithms in [Thibault and Naylor 87] require, when the 
faees of the b-rep object are entirely to one side of a partition- 
ins hyperplane, the determination of whether the correspond- 
ing sub-hp is inside or outside of the polyhedron. While 
[Thibault and Naylor 87] gives the simplest solutions for this 
in 2D and 3D, the method is cumbersome and does not easily 
generalize to arbitrary dimensions (so much so that we have 
not seriously attempted to do so). In our new setting, while we 
still need this classification of the sub-hp with respect to the 
inserted object, its spatial structure being a bsp tree makes this 
straightforward, and in fact occurs as part of the partitioning 
operation itself, thereby necessitating no additional considera- 
tion and so solves the problem for arbitrary dimensions. 

This work remains a hybrid approach, since b-reps are used 
for polygons, both as sub-hps and faces. However, prior to im- 
plementing this scheme, we devised an "all bsp tree" represen- 
tation which dispenses with b-reps entirely (see [Naylor 90b] 
for a brief description). Thus, the sub-hps and the faces of a d- 
dimensional tree are represented by d-1 dimensional trees, and 
so on reeursing in dimension until d = 0. This representation 
has many advantages including dimension independence as 
well as obviating the problem encountered here with b-reps not 
being able to represent unbounded sets. We chose to imple- 
ment the hybrid approach described here to provide a more 
easily attainable intermediate step, since many techniques 
have been developed using polygons as b-reps that must be 
provided in the new scheme. Nonetheless, the routines 
Merge_Bspts and Partition Bspt are essentially the same in 
both schemes, the difference being limited primarily to Bi- 
Partition_Bps; and forming the boundary requires only the 
capabilities already provided by these routines. 
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