CS384G — SpPRING 2004

DEPARTMENT OF COMPUTER SCIENCES

Projections

Mapping from d dimensional space to d—1 dimensional subspace
Range of any projection P : R* — R? called a projection plane
P maps lines to points

The image of any point p under P is the intersection of a
projection line through p with the projection plane.

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Parallel Projections

All projection lines are parallel.

An orthographic projection has projection lines orthogonal to
projection plane.

Otherwise a parallel projection is an oblique projection

Particularly interesting oblique projections are the cabinet
projection and the cavalier projection.

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Perspective Projection

e All projection lines pass through the center of projection
(eyepoint).
e Therefore also called central projection

e This is not affine, but rather a projective transformation.

Projective Transformation

Does not preserve angles, distances, ratios of distances or affine
combinations.

Cross ratios are preserved.
Incidence relationships are generally preserved.

Straight lines are mapped to straight lines.

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Perspective Transform in Eye Coordinates

Given a point p, find its projection P(p)
Convenient to do this in eye coordinates, with center of projection
at origin and z = d projection plane

Note that eye coordinates are left-handed

y
p=(xy,2)
y
(0,0 d Z
z |

Projection plane, z=d
Due to similar triangles P(p) = (dz/z,dy/z, d)
For any other point q = (kz,ky,kz),k # 0 on same
projection line P(q) = (dx/z,dy/z, d)
If we have surfaces, we need to know which ones occlude others
from the eye position

This projection loses all z information, so we cannot do occlusion
testing after projection

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Homogeneous Coordinates

Homogeneous coordinates represent n-space as a subspace of
n + 1 space
For instance, homogeneous 4-space embeds ordinary 3-space as
the w = 1 hyperplane

Thus, we can obtain the 3-d image of any homogeneous
point (wzx,wy,wz,w),w F* 0 as (z,y,z,1) =
(wz/w, wy/w, wz/w,w/w), that is, by dividing all
coordinates by w.
Lines in homogeneous space which intersect the w = 1
hyperplane project to 3-space points.

Notice that this is just a perspective projection from 4-d
homogeneous space to 3-space, instead of dividing by z, we
are dividing by w.

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

The OpenGL Perspective Matrix

The visible volume in world space is known as the viewing
pyramid or frustum.

Specify with the call glFrustum(l, »,b,t, n, f)
In OpenGL, the window is in the near plane

[and r are u-coordinates of left and right window boundaries
in the near plane

b and t are v-coordinates of bottom and top window boundaries
in the near plane

n and f are positive distances from the eye along the viewing
ray to the near and far planes

Maps the left and right clipping planesto x = —1 and x = 1
Maps the bottom and top clipping planestoy = —landy =1

Maps the near and far clipping planesto z = —1 and z = 1

; 1,1,1)
\
r& (_1’ -1, _1)

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Shearing the Window to the z axis

After applying the modelview matrix, we are looking down the
— 2z axis.

We need to move the ray from the origin through the window
center onto the —z axis.

Rotation won't do since the window wouldn’t be orthogonal to
the z axis.

Translation won't do since we need to keep the eye at the origin.

We need differential translation as a function of z, i.e. shear.

When z = —n, dx should be _1~2_47;l and dy should be _%’
so we get
) r+1
T — €T s
2n
, t+b
— s
Y J 2n
2 = z

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES

YA

IN R

CS384G — SpPRING 2004

N

[-(r-1)/2,(t-b)/2,1]

N A

oo = O

|
o O O =

r+l
i+b

2n

= O O O

R N e 8

iewing ffistum

[(r-1)/2,-(t-b)/B-n]

THE UNIVERSITY OF TEXAS AT AUSTIN

CS384G — SpPRING 2004

DEPARTMENT OF COMPUTER SCIENCES

Adjusting the Clipping Boundaries

For ease of clipping, we want the oblique clipping planes to have
equations * = *+z and y = *z.
This will make the window square, with boundaries] = b = —n
and r =t = n.

This requires a scale to make the window this size.

[-(r-1)/2,(t-b)/2,-11] [-n,n,-n] Z%

§

s *

[(r-1)/2,-(-b)/2.-11 [n-n,m]

Thus the mapping is

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES === (S384G — SPRING 2004

; 2nx
T =
r —1
/ 2ny
y j—
r —1
2 = 2z
or in matrix form:
'] _% 0 0 0] [a7
vy | _| 0 £ 0 0 Y
z' 0 0 1 O z
1] 0 0 0 1 1

THE UNIVERSITY OF TEXAS AT AUSTIN 10

CS384G — SpPRING 2004

DEPARTMENT OF COMPUTER SCIENCES

Field of View Frustum Scaling

e After the frustum is centered on the —z axis:
y

. <—near plane
window P

(thy2 | <8

%’MVN

' viewing frustum

_ 0
Note that -2 = cot (%)
This gives the y mapping y" = vy cot (%)
Since the window need not be square, we can define the x

mapping using the aspect ratio aspect = ﬁz = E:__é;

17 ycot (%)
Then x mapsas ¢’ = x
aspect

11

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES

CS384G — SpPRING 2004

e This gives us the alternative scaling formulation:

~

~

—_ N 8

e This is used by gluPerspective(0, aspect, n, f)

THE UNIVERSITY OF TEXAS AT AUSTIN

aspect

0
0
0

0
cot (

0

0

D

)

= o O

0

= O O O

N < K

12

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Perspective Mapping

e Recall that we want to map the frustum to a 2x2x2 cube centered

at the origin.
; (11,1
\
& (_1’ -1, _1)

OpenGL looks down —z rather than z.

Note that when you specify n and f, they are given as positive
distances down z = —1.

First we map the bounding planes * = 4z and y = 4z to the
planes x = £1 and y = %1.

This can be done by mapping = to % and y to .

If we set 2/ = —1, this is equivalent to projecting onto the
z = —1 plane.

However, we want to derive a map for z that preserves lines and
depth information.

x Y
To map z to = and y to = -

First use a matrix to map to homogeneous coordinates, then
project back to 3 space by dividing (normalizing).

THE UNIVERSITY OF TEXAS AT AUSTIN 13

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

1 0 O O T x
O 1 0 O Y - Y
0O 0 a c z B az + c
0 0 b d | [1] | bz +d |

bz:fl—d

y
— bz+d
— az+c
bz+d

1

e Now we solve for a, b, c and d such that z € [n, f] maps to
2 e [—1,1].

e To map = to =,

T
= = d=0and b = —1
bz +d —z
e Thus
az + c az + c
becomes
bz + d —z

14

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

e Since the near planeisat z = —mn and the far planeat z = — f,
our constraints on the near and far clipping planes (e.g., that
they map to -1 and 1) give us

q_—an~rc ~ = —n4an
n
—af —n+ an
1= = ~ (f+m) =a(n-)
= a—f_l_n
n— f
L =U+n)
f—n
e +—(f+n)n
f—n
_ —n(f —n) = n(f +n)
f—n
_ —2fn
_f—n
This gives us
1 0 0 0 |17 21 I T
0 1 0 0 Yy Y
0 0 _E‘f—tzn) —]82_];7: Py — —Z(f+il7)z—2fn
| 0 0 —1 0 | 1]] —z

THE UNIVERSITY OF TEXAS AT AUSTIN 15

CS384G — SpPRING 2004

DEPARTMENT OF COMPUTER SCIENCES

e After normalizing we get

T Yy —z(f4+n)—2fn 1
—z ' =z —z(f —n) ’

e If we multiply this matrix in with the geometric transforms, the
only additional work is the divide.

e After normalization we are in [eft-handed 3-dimensional
Normalized Device Coordinates

16

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES

Complete OpenGL Perspective Matrix

CS384G — SpPRING 2004

e Combining the three steps given above, the complete OpenGL

perspective matrix is

o= O O

2n r41 7
U = 0 | _
O 0 _gcf‘f‘n) —2fn _
0 0 —1 0
1 0 0 o [2 o
0 1 0 0 0 %
0 o —m —2fn 0 0
| 0 O —1 0 0 0
"1 0 ZE 0]
£+b
0 1 ;—n 0
O 0 1 O
0 0 0 1
e Using gluPerspective the matrix becomes
| el O 0 0
0 cot(6/2) 0 0
—(f+n) —2fn
0 0 Fn n
0 0 —1 0

THE UNIVERSITY OF TEXAS AT AUSTIN

= o O O

17

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Why Map Z

3D — 2D projections map all z to same value.

Need z to determine occlusion, so a 3D to 2D projective
transformation doesn’t work.

Further, we want 3D lines to map to 3D lines (this is useful in
hidden surface removal).

The mapping (z,y,2,1) — (xn/z,yn/z,n,1) maps lines
to lines, but loses all depth information.

We could use
(wayaza 1) = (wn/zayn/zaza 1)

Thus, if we map the endpoints of a line segment, these end
points will have the same relative depths after this mapping.

BUT: It fails to map lines to lines

The map

xn yn zf+zn —2fn
(m7y7z71)|_>(> Y > Y Z(f_n) 7]‘>

does map lines to lines, and it preserves depth information.

THE UNIVERSITY OF TEXAS AT AUSTIN 18

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Mapping Z

e lIt's clear how x and y map. How about z?

N zf+2zn —2fn — P(2)

z2(f —n)

e We know P(f) =1 and (P(n) = —1. What maps to 07

P(z) =0
zf+2zn —2fn
AT
_ 2fn
= z = f+n

Note that f* + 2f > 2fn/(f +n) > fn + n’so

2fn
P> fam 27

THE UNIVERSITY OF TEXAS AT AUSTIN s |)

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

e What happens as map z to 0 or to infinity?

, B —2fn
S, Plz) = z(f —n)
= —00
: B —2fn
i Plz) = z(f —n)
o “+ o0
. _ z2(f+n)
z1—1>I—|¥100P(Z) - Z(f — n)
B s L
=
dim P = DT
B s L
=

THE UNIVERSITY OF TEXAS AT AUSTIN =) ()

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

2fn
0 n f+n f
% + 00
/
e
1 0 1 fn
f-n

THE UNIVERSITY OF TEXAS AT AUSTIN 21

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

e What happens if we vary f and n?

zZ(f+n)—2fn

PR = T
_ (2zn —2n?)
N z-0

which is not surprising, since we're trying to map a single point
to a line segment.

. _ z2f=2fn
pRrE = T
. z —2n
o z

e But note that this means we are mapping an infinite region to
[0,1] and we will effectively get a far plane due to floating point
precision,

: _zf
’}Ll—% P(z) = P

i.e., the entire map becomes constant (again, we are mapping a
point to an interval).

THE UNIVERSITY OF TEXAS AT AUSTIN 22

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

e Consider what happens as f and n move away from each other.
— We are interested in the size of the regions [n, 2fn/(f+n)]

and [2fn/(f +n), f].

— When f is large compared to n, we have

2)
2fn L,

f+n

So
2fn
f+n

—n=n

and
f— 2/m = f —2n
f+n

But both intervals are mapped to a regions of size 1.
— Thus, as we move the clipping planes away from one another,

the far interval is compressed more than the near one. With

floating point arithmetic, this means we'll lose precision.
— In the extreme case, think about what happens as we move

f to infinity: we compress an infinite region to an finite one.
— Therefore, we try to place our clipping planes as close to one

another as we can.

23

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Clipping in Homogeneous Space

Projection: linear transformations then normalize

e Linear transformation

Cnr 0 0 0 | Tz [T
0 ns O 0 y | | ¥y
0o o o 2 z | | z
0 0 1 0 1] | W
e Normalization
T [Z/w] X
g | _|ygwo|_|Y
Z Z/w Z
| W 1] 1]

24

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Region Mapping

THE UNIVERSITY OF TEXAS AT AUSTIN s) b

DEPARTMENT OF COMPUTER SCIENCES CS384G — SpPRING 2004

Clipping not good after normalization:

e Ambiguity after normalization

T, Y,z

Ned|

—1<

< +1

g

— Numerator can be positive or negative
— Denominator can be positive or negative

e Normalization expended on points that are subsequently clipped.

Clipping in homogeneous coordinates:

e Compare unnormalized coordinate against w

—|’U_)| S Cl_?,g,z S —|—|’U_)|

26

THE UNIVERSITY OF TEXAS AT AUSTIN

