
CS384G Homework 1 Fall 2011

Name:

Sampling theory, image processing, affine transformations
Assigned: September 12, 2011

Due: September 26, 2011
(at the beginning of class)

Directions: Please provide short written answers to the following questions. Feel free to talk
over the problems in general terms with classmates, but please answer the questions on your
own.

1. (40 points) Fourier transforms and signal reconstruction

In this problem, you will take a closer look at convolution, Fourier transforms and signal reconstruction.
We begin with a couple of preliminaries.

i) Recall that the box function II(x) is defined as:

II(x) =


1 |x| < 1/2,
1/2 |x| = 1/2,
0 |x| > 1/2.

and its Fourier transform is sinc(s) = sin(πs)/πs. Likewise, the Fourier transform of sinc(x)
is II(s). More generally, for some constant frequency ω0, the Fourier transform of II(ω0x) is
1

ω0
sinc( 1

ω0
s) Also, we can show that sinc(0) = 1. This transform pair is depicted graphically in

the lecture notes.

ii) The dirac delta function δ(x) can be defined as:

δ(x) = 0, for all x 6= 0,
δ(0) = ∞,

and with the property that
∫∞
−∞ δ(x)dx = 1.

The Fourier transform of cos(2πf0x) is

1
2
δ(s− f0) +

1
2
δ(s+ f0),

and vice-versa. The constant f0 represents the frequency of the cosine function. This transform
pair is also depicted graphically in the lecture notes.

iii) If the Fourier transform of h(x) is H(s), then the Fourier transform of kh(x) is kH(s).

iv) The hat function, ∧(x), is defined as:

∧(x) =

{
1− |x| |x| ≤ 1,
0 |x| > 1.
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We sample a function by multiplying with the comb or shah function:

f̂(x) = f(x)III(x) =
i=∞∑

i=−∞
f(i)δ(x− i)

We reconstruct by convolving with a reconstruction filter r(x):

f̃(x) = r(x) ∗ f̂(x) =
i=∞∑

i=−∞
f̂(i)r(x− i)

Now we get to the problems you need to solve. (Hint: There is an easy way and a hard way to do
these problems. The easy way is to use various simple properties of the Fourier transform. Try to
avoid setting up involved integration problems.)

a) Convolution:
Given a function f(x) = cos(2πx) + cos(8πx)

i) What is its Fourier transform (in equation form)? Plot the magnitude of the Fourier trans-
form, with properly labeled axes.

ii) Given a convolution filter h(x) = sinc(5x), what is the function that results from convolving
f(x) with h(x)?

b) Sampling and Reconstruction:
Given the same function f(x) = cos(2πx) + cos(8πx)

i) Plot this function.

ii) If we sample this signal at points 0, 1/8, 2/8, 3/8, ., and then reconstruct it with a linear
reconstruction kernel, h(x) = ∧(8x), what is the plot of the reconstructed signal? Is this
signal the same as the original signal f(x)? Discuss why or why not.
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2. (20 points) Pre-filtering to minimize aliasing during sampling

This problem considers the use of pre-filtering to reduce the high-frequency content of a signal prior
to sampling it. By pre-filtering, we can reduce or eliminate the aliasing introduced by sampling.

To keep the problem simple, we are considering 1D sampling of audio (temporal) signals rather than
2D sampling of image (spatial) signals. Thus, in the Fourier domain the units are Hz (temporal
cycles/second). But these same ideas are also used for 2D and 3D sampling in computer graphics.

Digital telephone systems sample audio signals at a rate of 8kHz.

a) What is the highest audio frequency that can be sampled by a telephone system without aliasing?

b) Humans can hear frequencies up to approximately 20 kHz. For the sake of simplicity, assume that
the audio signal that we are sampling has a flat frequency spectrum from 0 to 20KHz. To avoid
aliasing when we sample this signal, we are going to first pre-filter it with an analog filter to reduce
the amount of energy in the signal above the frequency found in part (a). Our filter operates in
the time domain (equivalent to the spatial domain for images). Our filter is implemented as
convolution with a kernel we will design in the time domain. Describe a filter that will eliminate
all frequencies above the Nyquist limit. Express the filter mathematically in both the time domain
and the frequency domain. i.e. what is h(t) and what is H(s)?
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3. (20 points) Image processing

Describe the effect of each of the following filters. In addition, indicate which filter will cause the most
blurring and which, when convolved with a solid (positive) intensity image, will produce the brightest
image and which will produce the darkest image. Justify your answers.

0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

0 0 1

0 -2 0

1 0 0

0 0.2 0

0.2 0.4 0.2

0 0.2 0

0 -1 0

0 3 0

0 -1 0
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4. (20 points) Affine Transformations

a) As discussed in class, any three-dimensional affine transformation can be represented with a 4×4
matrix. Match each of the matrices below to exactly one of the following transformations (not all
blanks will be filled):

Differential (Non-Uniform) Scaling
Reflection
Rotation about the z-axis with non-uniform scaling
Rotation about the y-axis with non-uniform scaling
Translation
Rotation about the x-axis
Rotation about the y-axis
Rotation about the z-axis
Shearing along z with respect to the x-y plane (z=0 plane unchanged by shear)
Shearing along x with respect to the y-z plane (x=0 plane unchanged by shear)
Rotation about the x-axis and translation
Uniform scaling
Reflection with non-uniform scaling

A =


1 0 0 6

0 1 0 3

0 0 1 2

0 0 0 1

 B =


1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1

 C =


0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



D =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

 E =


2 0 0 0

0 3 0 0

0 0 2 0

0 0 0 1

 F =


1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1



G =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 H =


1 0 −1 0

0 1 0 0

1 0 1 0

0 0 0 1

 I =


1 0 0 1

0 0.6 0.8 0

0 −0.8 0.6 0

0 0 0 1


b) Consider a line that passes through a point p = (px, py, pz) in the direction v = (cos(α), 0, sin(α)).

Write out the product of matrices that would perform a rotation by θ about this line. You should
not multiply these matrices out, but you do need to write out all of the elements in these matrices.
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