
Texture Mapping
CS384G – Fall 2012

Christian Miller

Surface detail

Surface detail

¤  Most things have a lot of detail, and simple polygons or
triangle meshes are poor approximations

¤  Modeling all that detail with simple primitives would take
eons, and enormous amounts of storage

¤  Rendering all of it would take forever too

¤  We can’t just give up, so we need some way to make
surfaces look more detailed than they actually are…

Wallpaper

Texture mapping

¤  Take an image with the surface detail on it
¤  The pixels that make up the texture are often called texels

¤  Stretch it over the surface

¤  When rendering a pixel, look up the diffuse color from the
texture and use the rest of the light model as usual

Mapping to a surface

¤  Accomplished through texture coordinates (u, v)

¤  The texture image has coordinates (0, 0) in the lower left
corner and (1, 1) in the upper right

¤  For a mesh, have user specify the (u, v) coordinates at
each vertex

¤  To render a pixel, interpolate (u, v) at the intersection
point, use those texcoords to look up the right color from
the texture

Specifying texcoords

[Muse Games]

[Muse Games]

Alternate ways of generating UVs

¤  You don’t necessarily need to specify texcoords on a per-
vertex basis

¤  Sometimes a simpler function can do it automatically for you

Texture edge modes

¤  What do you do when you get a texcoord outside [0, 1]?

¤  Adopt some convention:
¤  Loop around and start at the other side (wrapping)
¤  Reflect the image backwards (mirroring)
¤  Repeat the edge pixels (clamping)
¤  Default to some other color (bordering)

Texture lookup

Texture filtering

¤  Simply returning the pixel you hit in the texture(nearest
neighbor) looks terrible

¤  Far away, the texture is undersampled and unrecognizable

¤  Up close, the texels look huge and blocky

Magnification

¤  The image looks really blocky, since each texel covers
several pixels

¤  Since we have more pixels covering the area than there
are texels, we need to fake data that isn’t there

¤  Blurring the image is a good idea, since even that looks
better than giant sharp-edged texels

¤  The usual fix is bilinear interpolation (bilerp)

Bilinear interpolation

¤  Sample neighboring texels, blend them linearly

¤  T(a, b) = (1-∆x)(1-∆y) T(i, j) + ∆x (1-∆y) T(i+1, j) +
(1-∆x)∆y T(i, j+1) + ∆x ∆y T(i+1, j+1)

Bilerp results

Minification

¤  One pixel on the screen can cover any number of texels

¤  Coverage area in texture space is an arbitrary shape

¤  This is an undersampling issue, which means it can be addressed
with anti-aliasing methods

Supersampling

¤  Since we have several texels being covered by a single
pixel, the analytic method is to take an average of all
texels weighted by their intersection area with the pixel
¤  This is expensive and complicated

¤  Can be approximated by sending several jittered rays
through the area of the pixel and averaging them
¤  Still expensive, but not complicated

¤  Most high-quality renders do this anyway, since it smooths
out jaggies on edges as well as textures

¤  Used very commonly in raytracers

Mipmapping

¤  In a realtime system, you may not be able to afford
taking tons of samples per pixel

¤  Instead, take the original textures and make several pre-
blurred versions of them
¤  Each texture is half the size of the larger one, giving a

pyramid of textures from each full image

¤  Requires 1/3rd more memory than just the original texture

¤  Then at runtime, use distance from camera and surface
angle to pick a version of the texture to sample

Mipmap pyramid

Mipmap results

Standard texture mapping

Standard texture mapping

Other maps

¤  So far, we’ve just been using texture maps to alter the
diffuse component of the lighting model

¤  In the most general case, a texture just represents some
function attached to a surface

¤  What happens if we use it to store other components of
the lighting model?

Specular mapping

¤  Use a texture to store the intensity of the specular term

Normal mapping

¤  Store surface normal (relative to geometry) compressed
in a texture map

¤  At runtime, look up normal in texture and add it to the
usual normal that’s interpolated from the vertices

¤  Makes a huge visual difference without adding geometry

+ =

Normal mapping

Normal mapping

Normal mapping details

¤  Normals are stored in texture by making the (r, g, b)
components the (x, y, z) values of the normal

¤  Z is clearly in the normal direction from the surface, but the X
and Y directions are unspecified

¤  Need to add tangent and binormal vectors to form a full
coordinate system at every point

Displacement mapping

¤  Normal maps don’t add any detail to the silhouette of an
object, since the actual geometry is still simple

¤  You can finely subdivide the geometry and use a
displacement map to offset the individual vertices

Environment mapping

¤  There’s no reason a texture needs to be glued to a
surface, we can compute texcoords on the fly

¤  For example, if we’re running in realtime and want
reflections but can’t afford to cast rays…
¤  Store the surrounding environment in a texture map

¤  Compute reflection vectors at each vertex, use those to set
texture coordinates, then the environment gets mapped
onto the surface as if it was reflected

Spherical environment mapping

¤  Store the environment as a picture of a perfectly
reflective sphere, easy math to compute texcoords

¤  Only covers a hemisphere, reflections remain fixed
relative to the camera

Cube mapping

¤  Spherical environment mapping can’t get all sides of an
object, so you can use texture maps on the sides of a
cube instead

¤  Math is more complicated, but results are better

¤  Easier to render environment map at runtime too

Cube mapping

Cube mapping

3D textures

It’s a big iceberg

¤  There are enormous numbers of ways that texture
mapping has been used

¤  Basically every cool graphics effect you see in realtime is
a texturing trick

¤  A good chunk of prerendered stuff is too

