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Image processing
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Reading

Jain, Kasturi, Schunck, Machine Vision.
McGraw-Hill, 1995. Sections 4.2-4.4,
4.5(intro), 4.5.5, 4.5.6, 5.1-5.4.
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Image processing
An image processing operation typically defines a new
image g in terms of an existing image f.
The simplest operations are those that transform each pixel
in isolation.  These pixel-to-pixel operations can be
written:

Examples: threshold, RGB  grayscale
Note: a typical choice for mapping to grayscale is to apply
the YIQ television matrix and keep the Y.! 

g(x,y) = t( f (x,y))
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Pixel movement

Some operations preserve intensities, but move
pixels around in the image

Examples: many amusing warps of images

[Show image sequence.]
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Noise
 Image processing is also useful for noise reduction and edge

enhancement.  We will focus on these applications for the remainder of
the lecture…

 Common types of noise:
 Salt and pepper noise:

contains random
occurrences of black and
white pixels

 Impulse noise: contains
random occurrences of
white pixels

 Gaussian noise:
variations in intensity drawn
from a Gaussian normal
distribution
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Ideal noise reduction
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Ideal noise reduction
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Practical noise reduction

How can we “smooth” away noise in a single image?

Is there a more abstract way to represent this sort of
operation? Of course there is!
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Discrete convolution

For a digital signal, we define discrete convolution as:

where
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= f [ # i ]h[i $ # i ]
# i 

%

= f [ # i ]
) 
h [ # i $ i]

# i 

%

  

! 

) 
h [i] = h["i]



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010   Don Fussell                 10

Discrete convolution in 2D

 Similarly, discrete convolution in 2D becomes:

where

  

! 

g[i, j] = f [i, j]" h[i, j]
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Convolution representation

Since f and h are defined over finite regions, we can write
them out in two-dimensional arrays:

Note: This is not matrix multiplication!
Q: What happens at the edges?
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Mean filters

How can we represent our noise-reducing
averaging filter as a convolution diagram
(know as a mean filter)?
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Effect of mean filters
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Gaussian filters

Gaussian filters weigh pixels based on their distance from
the center of the convolution filter.  In particular:

This does a decent job of blurring noise while preserving
features of the image.
What parameter controls the width of the Gaussian?
What happens to the image as the Gaussian filter kernel
gets wider?
What is the constant C?  What should we set it to?
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Effect of Gaussian filters
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Median filters

A median filter operates over an mxm
region by selecting the median intensity in
the region.
What advantage does a median filter have
over a mean filter?
Is a median filter a kind of convolution?
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Effect of median filters
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Comparison: Gaussian noise
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Comparison: salt and pepper noise
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Edge detection

One of the most important uses of image
processing is edge detection:

Really easy for humans
Really difficult for computers

Fundamental in computer vision
Important in many graphics applications
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What is an edge?

Q: How might you detect an edge in 1D?
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Gradients

The gradient is the 2D equivalent of the derivative:

Properties of the gradient
It’s a vector
Points in the direction of maximum increase of f
Magnitude is rate of increase

How can we approximate the gradient in a discrete image?
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Less than ideal edges
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Steps in edge detection

Edge detection algorithms typically proceed
in three or four steps:

Filtering: cut down on noise
Enhancement: amplify the difference between
edges and non-edges
Detection: use a threshold operation
Localization (optional): estimate geometry of
edges beyond pixels
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Edge enhancement
A popular gradient magnitude computation is the Sobel
operator:

We can then compute the magnitude of the vector (sx, sy).
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Results of Sobel edge detection
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Second derivative operators

The Sobel operator can produce thick edges.  Ideally, we’re looking for
infinitely thin boundaries.

An alternative approach is to look for local extrema in the first
derivative: places where the change in the gradient is highest.

Q: A peak in the first derivative corresponds to what   in the second
derivative?

Q: How might we write this as a convolution filter?
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Localization with the Laplacian

An equivalent measure of the second derivative in 2D is
the Laplacian:

Using the same arguments we used to compute the
gradient filters, we can derive a Laplacian filter to be:

Zero crossings of this filter correspond to positions of
maximum gradient.  These zero crossings can be used to
localize edges.
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Localization with the Laplacian

Original Smoothed

Laplacian (+128)
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Marching squares

We can convert these signed values into
edge contours using a “marching squares”
technique:
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Sharpening with the Laplacian

Original Laplacian  (+128)

Original + Laplacian Original - Laplacian
Why does the sign make a difference?
How can you write each filter that makes each bottom image?
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Spectral impact of sharpening
We can look at the impact of sharpening on the Fourier spectrum:

2

0 1 0

1 5 1

0 1 0

!

"# $
% &" ' = " "% &
% &"( )

Spatial domain Frequency domain



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010   Don Fussell                 33

Summary

What you should take away from this lecture:
The meanings of all the boldfaced terms.
How noise reduction is done
How discrete convolution filtering works
The effect of mean, Gaussian, and median filters
What an image gradient is and how it can be computed
How edge detection is done
What the Laplacian image is and how it is used in either edge
detection or image sharpening



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010   Don Fussell                 34

Next time: Affine Transformations

Topic:
How do we represent the rotations, translations, etc.

needed to build a complex scene from simpler objects?
Read:

• Watt, Section 1.1.

Optional:
• Foley, et al, Chapter 5.1-5.5.
• David F. Rogers and J. Alan Adams, 

Mathematical Elements for Computer Graphics, 2nd
Ed., McGraw-Hill, New York, 1990, Chapter 2.


