Affine Transformations

Logistics

- Required reading:

■ Watt, Section 1.1.

- Further reading:

■ Foley, et al, Chapter 5.1-5.5.
\square David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, $2^{\text {nd }}$ Ed., McGrawHill, New York, 1990, Chapter 2.
■ Logistics:
■ HW \#1 handed out Monday
■ Project \#1 due on Monday, artifact on following Monday.

Geometric transformations

■ Geometric transformations will map points in one space to points in another: $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\boldsymbol{f}(x, y, z)$.
$■$ These transformations can be very simple, such as scaling each coordinate, or complex, such as nonlinear twists and bends.

- We'll focus on transformations that can be represented easily with matrix operations.
■ We'll start in 2D...

Representation

- We can represent a point, $\mathbf{p}=(\mathrm{x}, \mathrm{y})$, in the plane
nssacolumn vecerar $\left[\begin{array}{l}x \\ y\end{array}\right]$
- as a row vector

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]
$$

Representation, cont.

■ We can represent a 2-D transformation \mathbf{M} by a matrix

$$
\mathbf{M}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- If \mathbf{p} is a column vector, M goes on the left: $\mathbf{p}^{\prime}=\mathbf{M p}$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

■ If \mathbf{p} is a row vector, M^{T} goes on the right: $\mathbf{p}^{\prime}=\mathbf{p} \mathbf{M}^{\mathbf{T}}$

$$
\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

■ We will use column vectors.

Two-dimensional transformations

■ Here's all you get with a 2×2 transformation matrix \mathbf{M} :

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

■ So: $\quad x^{\prime}=a x+b y$

$$
y^{\prime}=c x+d y
$$

■ We will develop some intimacy with the elements $a, b, c, d \ldots$

Identity

■ Suppose we choose $a=d=1, b=c=0$:
-Gives the identity matrix:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Doesn't move the points at all

Scaling

■ Suppose $b=c=0$, but let a and d take on any positive value:

- Gives a scaling matrix:

$$
\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]
$$

■ Provides differential (non-uniform) scaling in x and y :

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=d y
\end{aligned}
$$

Reflection

■ Suppose $b=c=0$, but let either a or d go negative. ■ Examples:

Shear

- Now leave $a=d=1$ and experiment with b
\square The matrix $\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]$

$$
\begin{array}{ll}
\text { gives: } & x^{\prime}=x+b y \\
& y^{\prime}=y
\end{array}
$$

Effect on unit square

- Let's see how a general 2×2 transformation \mathbf{M} affects the unit square:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
\mathbf{p} & \mathbf{q} & \mathbf{r} & \mathbf{s}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{p}^{\prime} & \mathbf{q}^{\prime} & \mathbf{r}^{\prime} & \mathbf{s}^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & a & a+b & b \\
0 & c & c+d & d
\end{array}\right]}
\end{aligned}
$$

Effect on unit square, cont.

■ Observe:

- Origin invariant under M
$■ M$ can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and d give x - and y-scaling
- b and c give x - and y-shearing

Rotation

■ From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
-\sin (\theta) \\
\cos (\theta)
\end{array}\right]}
\end{aligned}
$$

Thus

$$
M_{R}=R(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Linear transformations

- The unit square observations also tell us the 2×2 matrix transformation implies that we are representing a point in a new coordinate system:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{M} \mathbf{p} \\
& =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =x \cdot \mathbf{u}+y \cdot \mathbf{v}
\end{aligned}
$$

- where $\mathbf{u}=[a c]^{\mathrm{T}}$ and $\mathbf{v}=\left[\begin{array}{ll}b & d\end{array}\right]^{\mathrm{T}}$ are vectors that define a new basis for a linear space.
- The transformation to this new basis (a.k.a., change of basis) is a linear transformation.

Limitations of the 2×2 matrix

- A 2×2 linear transformation matrix allows
\square Scaling
-Rotation
-Reflection
-Shearing
- Q: What important operation does that leave out?

Affine transformations

- In order to incorporate the idea that both the basis and the origin can change, we augment the linear space \mathbf{u}, \mathbf{v} with an origin \mathbf{t}.
- Note that while \mathbf{u} and \mathbf{v} are basis vectors, the origin \mathbf{t} is a point.
- We call \mathbf{u}, \mathbf{v}, and \mathbf{t} (basis and origin) a frame for an affine space.
- Then, we can represent a change of frame as:

$$
\mathbf{p}^{\prime}=x \cdot \mathbf{u}+y \cdot \mathbf{v}+\mathbf{t}
$$

- This change of frame is also known as an affine transformation.
- How do we write an affine transformation with matrices?

Homogeneous Coordinates

- To represent transformations among affine frames, we can loft the problem up into 3 -space, adding a third component to every point:

$$
\mathbf{p}^{\prime}=\mathbf{M p}
$$

$$
=\left[\begin{array}{lll}
a & b & t_{x} \\
c & d & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{t}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
=x \cdot \mathbf{u}+y \cdot \mathbf{v}+1 \cdot \mathbf{t}
$$

- Note that $\left[\begin{array}{lll}a & c & 0\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{lll}b & d & 0\end{array}\right]^{\mathrm{T}}$ represent vectors and $\left[\begin{array}{lll}t_{x} & t_{y} & 1\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}x & y & 1\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right]^{\mathrm{T}}$ represent points.

Homogeneous coordinates

This allows us to perform translation as well as the linear transformations as a matrix operation:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{M}_{\mathrm{T}} \mathbf{p} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] } & =\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{y}
\end{aligned}
$$

Rotation about arbitrajy points

Until now, we have only considered rotation about the origin.
With homogeneous coordinates, you can specify a rotation, $\mathbf{R}_{\mathbf{q}}$, about any point $\mathbf{q}=\left[q_{x} q_{y} 1\right]^{\top}$ with a matrix:

1. Translate \mathbf{q} to origin
2. Rotate
3. Translate back

Line up the matrices for these step in right to left order and multiply.
Note: Transformation order is important!!

Points and vectors

From now on, we can represent points as have an additional coordinate of $w=1$.
Vectors have an additional coordinate of $w=0$. Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a matrix by a vector?
These representations reflect some of the rules of affine operations on points and vectors:

$$
\begin{aligned}
\text { vector }+ \text { vector } & \rightarrow \\
\text { vector } \cdot \text { vector } & \rightarrow \\
\text { point }- \text { point } & \rightarrow \\
\text { point }+ \text { vector } & \rightarrow \\
\text { point }+ \text { point } &
\end{aligned}
$$

One useful combination of affine operations is: $\mathbf{p}(t)=\mathbf{p}_{\mathbf{0}}+t \mathbf{v}$
Q: What does this describe?

Barycentric coordinates

A set of points can be used to create an affine frame. Consider a triangle $A B C$ and a point \mathbf{p} :

We can form a frame with an origin C and the vectors from C to the other vertices:

$$
\mathbf{u}=\mathrm{A}-\mathrm{C} \quad \mathbf{v}=\mathrm{B}-\mathrm{C} \quad \mathrm{t}=\mathrm{C}
$$

We can then write P in this coordinate frame $\mathbf{p}=\alpha \mathbf{u}+\beta \mathbf{v}+\mathbf{t}$

The coordinates (α, β, γ) are called the barycentric coordinates of p relative to A, B, and C.

Computing barycentric coordinates

For the triangle example we can compute the barycentric coordinates of P :

$$
\begin{aligned}
& \text { P: } \\
& \alpha A+\beta B+\gamma C=\left[\begin{array}{ccc}
A_{x} & B_{x} & C_{x} \\
A_{y} & B_{y} & C_{y} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p}_{x} \\
\mathbf{p}_{y} \\
1
\end{array}\right]
\end{aligned}
$$

Cramer's rule gives the solution:

Computing the determinant of the denominator gives:

$$
B_{x} C_{y}-B_{y} C_{x}+A_{y} C_{x}-A_{x} C_{y}+A_{x} B_{y}-A_{y} B_{x}
$$

Cross products

Consider the cross-product of two vectors, \mathbf{u} and \mathbf{v}. What is the geometric interpretation of this cross-product?
A cross-product can be computed as:

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left\|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right\| \\
& =\left(u_{y} v_{z}-u_{z} v_{y}\right) \mathbf{i}+\left(u_{z} v_{x}-u_{x} v_{z}\right) \mathbf{j}+\left(u_{x} v_{y}-u_{y} v_{x}\right) \mathbf{k} \\
& =\left[\begin{array}{l}
u_{y} v_{z}-u_{z} v_{y} \\
u_{z} v_{x}-u_{x} v_{z} \\
u_{x} v_{y}-u_{y} v_{x}
\end{array}\right]
\end{aligned}
$$

What happens when \mathbf{u} and \mathbf{v} lie in the $x-y$ plane? What is the area of the triangle they span?

Barycentric coords from area ratios

Now, let's rearrange the equation from two slides ago:

$$
\begin{aligned}
& B_{x} C_{y}-B_{y} C_{x}+A_{y} C_{x}-A_{x} C_{y}+A_{x} B_{y}-A_{y} B_{x} \\
& =\left(B_{x}-A_{x}\right)\left(C_{y}-A_{y}\right)-\left(B_{y}-A_{y}\right)\left(C_{x}-A_{x}\right)
\end{aligned}
$$

The determinant is then just the z-component of
$(\mathrm{B}-\mathrm{A}) \times(\mathrm{C}-\mathrm{A})$, which is two times the area of triangle $A B C$!
Thus, we find:

$$
\alpha=\frac{\operatorname{SArea}(\mathbf{p} B C)}{\operatorname{SArea}(A B C)} \quad \beta=\frac{\operatorname{SArea}(A \mathbf{p} C)}{\operatorname{SArea}(A B C)} \quad \gamma=\frac{\operatorname{SArea}(A B \mathbf{p})}{\operatorname{SArea}(A B C)}
$$

Where SArea(RST) is the signed area of a triangle, which can be computed with cross-products.

Affine and convex combinations

Note that we seem to have added points together, which we said was illegal, but as long as they have coefficients that sum to one, it's ok.

We call this an affine combination. More generally $\mathbf{p}=\alpha_{1} \mathbf{p}_{\mathbf{1}}+\ldots+\alpha_{n} \mathbf{p}_{\mathbf{n}}$ is a proper affine combination if: $\sum_{i=1}^{n} \alpha_{i}=1$

Note that if the α_{i} 's are all positive, the result is more specifically called a convex combination.

Q: Why is it called a convex combination?

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like

 the 2-D ones.For example, scaling:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Translation in 3D

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation in 3D

Rotation now has more possibilities in 3D:

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) & 0 \\
0 & \sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{cccc}
\cos (\theta) & 0 & \sin (\theta) & 0 \\
0 & 1 & 0 & 0 \\
-\sin (\theta) & 0 & \cos (\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { Use right hand rule }
\end{aligned}
$$

Shearing in 3D

\square Shearing is also more complicated. Here is one example:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & b & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

$■$ We call this a shear with respect to the $\mathrm{x}-\mathrm{z}$ plane.

Preservation of affine combinations

A transformation F is an affine transformation if it preserves affine combinations:

$$
F\left(\alpha_{1} \mathbf{p}_{1}+\ldots+\alpha_{n} \mathbf{p}_{\mathbf{n}}\right)=\alpha_{1} F\left(\mathbf{p}_{1}\right)+\ldots+\alpha_{n} F\left(\mathbf{p}_{\mathbf{n}}\right)
$$

where the $\mathbf{p}_{\mathbf{i}}$ are points, and: $\sum_{i=1}^{n} \alpha_{i}=1$
Clearly, the matrix form of F has this property.
One special example is a matrix that drops a dimension. For example:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

This transformation, known as an orthographic projection, is an affine transformation.
We'll use this fact later...

Properties of affine transformations

- Here are some useful properties of affine transformations:
-Lines map to lines
-Parallel lines remain parallel
$■$ Midpoints map to midpoints (in fact, ratios are always preserved)

Summary

■ What to take away from this lecture:

- All the names in boldface.

■ How points and transformations are represented.
\square What all the elements of a 2×2 transformation matrix do and how these generalize to 3×3 transformations.
$■$ What homogeneous coordinates are and how they work for affine transformations.

■ How to concatenate transformations.
■ The rules for combining points and vectors
\square The mathematical properties of affine transformations.

Next class: Shading

■ Topics we'll cover:

- How does light interact with surfaces?
- What approximations do we use to model this interaction in computer graphics?
- Read:

Watt, sections $6.2-6.3$
Optional Reading: Watt, chapter 7.

