
University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell

Distribution Ray Tracing

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 2

Reading
Required:

Watt, sections 10.6 ,14.8.
Further reading:

A. Glassner. An Introduction to Ray Tracing. Academic
Press, 1989. [In the lab.]
Robert L. Cook, Thomas Porter, Loren Carpenter.
“Distributed Ray Tracing.” Computer Graphics
(Proceedings of SIGGRAPH 84). 18 (3). pp. 137-145. 1984.
James T. Kajiya. “The Rendering Equation.” Computer
Graphics (Proceedings of SIGGRAPH 86). 20 (4). pp. 143-
150. 1986.
Henrik Wann Jensen, “Basic Monte Carlo Integration”,
Appendix A from book “Realistic Image Synthesis Using
Photon Mapping”.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 3

Pixel anti-aliasing

No anti-aliasing

Pixel anti-aliasing

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 4

Surface reflection equation
In reality, surfaces do not reflect in a mirror-like fashion.
To compute the reflection from a real surface, we would
actually need to solve the surface reflection equation:

How might we represent light from a single direction?

We can plot the reflected light as a function of viewing angle
for multiple light source contributions:

!

I("out) = I(" in) fr
H

(" in ,"out)d" in

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 5

Simulating gloss and translucency
The mirror-like form of reflection, when used to
approximate glossy surfaces, introduces a kind of
aliasing, because we are undersampling reflection
(and refraction).
For example:

Distributing rays over reflection directions gives:

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 6

Reflection anti-aliasing

Reflection anti-aliasing

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 7

Full anti-aliasing

Full anti-aliasing…lots of nested integrals!

Computing these integrals is prohibitively expensive.

We’ll look at ways to approximate integrals…

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 8

Approximating integrals
Let’s say we want to compute the integral of a
function:

If f(x) is not known analytically, but can be
evaluated, then we can approximate the integral by:

Evaluating an integral in this manner is called
quadrature.

!

F = f (x)dx"

!

F "
1

n
f (i#x)

i=1

n

$

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 9

Integrals as expected values
An alternative to distributing the sample positions regularly
is to distribute them stochastically.
Let’s say the position in x is a random variable X, which is
distributed according to p(x), a probability density function
(strictly positive that integrates to unity).
Now let’s consider a function of that random variable,
f(X)/p(X). What is the expected value of this new random
variable?
First, recall the expected value of a function g(X):

Then, the expected value of f(X)/p(X) is:

!

E[g(X)] = g(x)p(x)dx"

!

E f (X) p(X)[] =
f (x)

p(x)
p(x)dx" = f (x)dx"

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 10

Monte Carlo integration
Thus, given a set of samples positions, Xi, we can estimate
the integral as:

This procedure is known as Monte Carlo integration.
The trick is getting as accurate as possible with as few
samples as possible.
More concretely, we would like the variance of the estimate
of the integral to be low:

The name of the game is variance reduction…

!

F "
1

n

f (Xi)

p(Xi)i=1

n

#

!

V
f (X)

p(X)

"

$

%

&
' = E

f (X)

p(X)

(

)
*

+

,
-

2"

$
$

%

&
'
'
. E

f (X)

p(X)

"

$

%

&
'

2

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 11

Uniform sampling
One approach is uniform sampling (i.e.,
choosing X from a uniform distribution):

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 12

Importance sampling
A better approach, if f(x) is positive, would be to
choose p(x) ~ f(x). In fact, this choice would be
optimal.

Why don’t we just do that?

Alternatively, we can use heuristics to guess where
f(x) will be large. This approach is called
importance sampling.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 13

Summing over ray paths
We can think of this problem in terms of enumerated rays:

The intensity at a pixel is the sum over the primary rays:

For a given primary ray, its intensity depends on secondary rays:

Substituting back in:
!

Ipixel =
1

n
I(ri

i=1

n

")

!

I(ri) =
1

n
I(rij) fr (rij " ri)

j

#

!

Ipixel =
1

n
I(rij) f r(rij " ri)

j

#
i

#

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 14

Summing over ray paths

We can incorporate tertiary rays next:

Each triple i,j,k corresponds to a ray path:

So, we can see that ray tracing is a way to approximate a complex, nested light
transport integral with a summation over ray paths (of arbitrary length!).

Problem: too expensive to sum over all paths.

Solution: choose a small number of “good” paths.

!

Ipixel =
1

n
I(rijk) fr (rijk " rij) f r(rij " ri)

k

#
j

#
i

#

!

rijk " rij " ri

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 15

Whitted integration
An anti-aliased Whitted ray tracer chooses very specific
paths, i.e., paths starting on a regular sub-pixel grid with only
perfect reflections (and refractions) that terminate at the light
source.

One problem with this approach is that it doesn’t account for
non-mirror reflection at surfaces.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 16

Monte Carlo path tracing
Instead, we could choose paths starting from random sub-
pixel locations with completely random decisions about
reflection (and refraction). This approach is called Monte
Carlo path tracing [Kajiya86].

The advantage of this approach is that the answer is known
to be unbiased and will converge to the right answer.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 17

Importance sampling
The disadvantage of the completely random generation of
rays is the fact that it samples unimportant paths and neglects
important ones.
This means that you need a lot of rays to converge to a good
answer.
The solution is to re-inject Whitted-like ideas: spawn rays to
the light, and spawn rays that favor the specular direction.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 18

Stratified sampling
Another method that gives faster convergence is stratified sampling.
E.g., for sub-pixel samples:

We call this a jittered sampling pattern.

One interesting side effect of these stochastic sampling patterns is that
they actually injects noise into the solution (slightly grainier images).
This noise tends to be less objectionable than aliasing artifacts.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 19

Distribution ray tracing
These ideas can be combined to give a particular method
called distribution ray tracing [Cook84]:

uses non-uniform (jittered) samples.
replaces aliasing artifacts with noise.
provides additional effects by distributing rays to sample:

Reflections and refractions
Light source area
Camera lens area
Time

[Originally called “distributed ray tracing,” but we will call
it distribution ray tracing so as not to confuse with parallel
computing.]

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 20

DRT pseudocode

TraceImage() looks basically the same, except now each pixel records
the average color of jittered sub-pixel rays.

function traceImage (scene):
for each pixel (i, j) in image do
I(i, j) ← 0
for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j, id))
p ← COP
d ←(s - p).normalize()
I(i, j) ← I(i, j) + traceRay(scene, p, d, id)

end for
I(i, j) I(i, j)/numSubPixels

end for
end function

A typical choice is numSubPixels = 4*4.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 21

DRT pseudocode (cont’d)
Now consider traceRay(), modified to handle (only) opaque glossy
surfaces:

function traceRay(scene, p, d, id):
(q, N, material) ← intersect (scene, p, d)
I ← shade(…)
R ← jitteredReflectDirection(N, -d, id)
I ← I + material.kr ∗ traceRay(scene, q, R, id)
return I

end function

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 22

Pre-sampling glossy reflections

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 23

Distributing rays over light source area gives:

Soft shadows

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 24

The pinhole camera
The first camera - “camera obscura” - known to Aristotle.

In 3D, we can visualize the blur induced by the pinhole (a.k.a.,
aperture):

Q: How would we reduce blur?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 25

Shrinking the pinhole

Q: How can we simulate a pinhole camera more accurately?

Q: What happens as we continue to shrink the aperture?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 26

Shrinking the pinhole, cont’d

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 27

Pinhole cameras in the real world require small apertures to keep the image in focus.

Lenses focus a bundle of rays to one point => can have larger aperture.

For a “thin” lens, we can approximately calculate where an object point will be in focus using
the the Gaussian lens formula:

where f is the focal length of the lens.

Lenses

1 1 1
+ =

o id d f

o
d

i
d

f

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 28

Depth of field
Lenses do have some limitations.
The most noticeable is the fact that points that are
not in the object plane will appear out of focus.
The depth of field is a measure of how far from
the object plane points can be before appearing
“too blurry.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 29

Simulating depth of field

Distributing rays over a finite aperture gives:

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 30

In general, you can trace rays through a
scene and keep track of their id’s to handle
all of these effects:

Chaining the ray id’s

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 31

DRT to simulate motion blur
Distributing rays over time gives:

