Angel, sections 9.1 - 9.6 [reader pp. 169-185]

OpenGL Programming Guide, chapter 3

Focus especially on section titled “Modelling Transformations”.
Hierarchical Modeling

Consider a moving automobile, with 4 wheels attached to the chassis, and lug nuts attached to each wheel:
Symbols and instances

- Most graphics APIs support a few geometric primitives:
 - spheres
 - cubes
 - triangles
- These symbols are **instanced** using an **instance transformation**.
Use a series of transformations

- Ultimately, a particular geometric instance is transformed by one combined transformation matrix:

- But it’s convenient to build this single matrix from a series of simpler transformations:

- We have to be careful about how we think about composing these transformations.

 (Mathematical reason: Transformation matrices don’t commute under matrix multiplication)
Two ways to compose xforms

- **Method #1:**
 Express every transformation with respect to global coordinate system:

- **Method #2:**
 Express every transformation with respect to a “parent” coordinate system created by earlier transformations:

The goal of this second approach is to build a series of transforms. Once they exist, we can think of points as being “processed” by these xforms as in Method #1.
#1: Xform for global coordinates

\[\text{FinalPosition} = M_1 \times M_2 \times \ldots \times M_n \times \text{InitialPosition} \]

Note: Positions are column vectors:

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
#2: Xform for coordinate system

FinalPosition = $M_1 \times M_2 \times \ldots \times M_n \times \text{InitialPosition}$
Xform direction for coord. sys

FinalPosition = $M_1 \times M_2 \times \cdots \times M_n \times \text{InitialPosition}$

Translate/Rotate:
FROM previous coord sys
TO new one
with transformation expressed in the ‘previous’ coordinate system.
Connecting primitives
3D Example: A robot arm

Consider this robot arm with 3 degrees of freedom:
- Base rotates about its vertical axis by θ
- Upper arm rotates in its xy-plane by ϕ
- Lower arm rotates in its xy-plane by ψ

Q: What matrix do we use to transform the base?
Q: What matrix for the upper arm?
Q: What matrix for the lower arm?
Robot arm implementation

- The robot arm can be displayed by keeping a global matrix and computing it at each step:

```c
Matrix M_model;
main()
{
    ...
    robot_arm();
    ...
}
robot_arm()
{
    M_model = R_y(theta);
    base();
    M_model = R_y(theta)*T(0,h1,0)*R_z(phi);
    upper_arm();
    M_model = R_y(theta)*T(0,h1,0)*R_z(phi)
    *T(0,h2,0)*R_z(psi);
    lower_arm();
}
```

Do the matrix computations seem wasteful?
Instead of recalculating the global matrix each time, we can just update it in place by concatenating matrices on the right:

```c
Matrix M_model;
main()
{
    . . .
    M_model = Identity();
    robot_arm();
    . . .
}
robot_arm()
{
    M_model *= R_y(theta);
    base();
    M_model *= T(0,h1,0)*R_z(phi);
    upper_arm();
    M_model *= T(0,h2,0)*R_z(psi);
    lower_arm();
}
```
OpenGL maintains a global state matrix called the **model-view matrix**, which is updated by concatenating matrices on the **right**.

```c
main()
{
    . . .
    glMatrixMode( GL_MODELVIEW );
    glLoadIdentity();
    robot_arm();
    . . .
}
robot_arm()
{
    glRotatef( theta, 0.0, 1.0, 0.0 );
    base();
    glTranslatef( 0.0, h1, 0.0 );
    glRotatef( phi, 0.0, 0.0, 1.0 );
    lower_arm();
    glTranslatef( 0.0, h2, 0.0 );
    glRotatef( psi, 0.0, 0.0, 1.0 );
    upper_arm();
}
```
Hierarchical modeling

- Hierarchical models can be composed of instances using trees or DAGs:

 - edges contain geometric transformations
 - nodes contain geometry (and possibly drawing attributes)

How might we draw the tree for the robot arm?
A complex example: human figure

Q: What’s the most sensible way to traverse this tree?
Human figure implementation, OpenGL

```c
figure()
{
    torso();
    glPushMatrix();
        glTranslate( ... );
        glRotate( ... );
    head();
    glPopMatrix();
    glPushMatrix();
        glTranslate( ... );
        glRotate( ... );
    left_upper_arm();
    glPushMatrix();
        glTranslate( ... );
        glRotate( ... );
    left_lower_arm();
    glMatrix();
    glPopMatrix();
    glPopMatrix();
    . . .
}
```
The above examples are called **articulated models**:

- rigid parts
- connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.
The most common method for character animation in production is **key-frame animation**.

- Each joint specified at various key frames (not necessarily the same as other joints)
- System does interpolation or **in-betweening**

Doing this well requires:
- A way of smoothly interpolating key frames: **splines**
- A good interactive system
- A lot of skill on the part of the animator
Scene graphs

- The idea of hierarchical modeling can be extended to an entire scene, encompassing:
 - many different objects
 - lights
 - camera position

- This is called a **scene tree** or **scene graph**.