

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell

Reading

- Required:

■ Witkin, Particle System Dynamics, SIGGRAPH '97 course notes on Physically Based Modeling.
■ Witkin and Baraff, Differential Equation Basics, SIGGRAPH '01 course notes on Physically Based Modeling.

■ Optional
■ Hocknew and Eastwood. Computer simulation using particles. Adam Hilger, New York, 1988.
■ Gavin Miller. "The motion dynamics of snakes and worms." Computer Graphics 22:169-178, 1988.

What are particle systems?

- A particle system is a collection of point masses that obeys some physical laws (e.g, gravity, heat convection, spring behaviors, ...).
\square Particle systems can be used to simulate all sorts of physical phenomena:

Particle in a flow field

$■$ We begin with a single particle with:
-Position, $\quad \overrightarrow{\mathbf{x}}=\left[\begin{array}{l}x \\ y\end{array}\right]$
-Velocity, $\quad \overrightarrow{\mathbf{v}}=\dot{\mathbf{x}}=\frac{d \overrightarrow{\mathbf{x}}}{d t}=\left[\begin{array}{l}d x / d t \\ d y / d t\end{array}\right]$

\square Suppose the velocity is actually dictated by some driving function \mathbf{g} :

$$
\mathbf{x}=\mathrm{g}(\overrightarrow{\mathbf{x}}, t)
$$

Vector fields

- At any moment in time, the function \mathbf{g} defines a vector field over \mathbf{x} :

$■$ How does our particle move through the vector field?

Diff eqs and integral curves

- The equation

$$
\mathbf{x}=g(\overrightarrow{\mathbf{x}}, t)
$$

is actually a first order differential equation.
■ We can solve for \mathbf{x} through time by starting at an initial point and stepping along the vector field:

- This is called an initial value problem and the solution is called an integral curve.

Euler's method

- One simple approach is to choose a time step, Δt, and take linear steps along the flow:

$$
\overrightarrow{\mathbf{x}}(t+\Delta t)=\overrightarrow{\mathbf{x}}(t)+\Delta t \cdot \dot{\mathbf{x}}(t)=\overrightarrow{\mathbf{x}}(t)+\Delta t \cdot g(\overrightarrow{\mathbf{x}}, t)
$$

- Writing as a time iteration:

$$
\overrightarrow{\mathbf{x}}^{i+1}=\vec{x}^{i}+\Delta t \cdot \overrightarrow{\mathbf{v}}^{i}
$$

■ This approach is called Euler's method and looks like:

- Properties:
- Simplest numerical method
- Bigger steps, bigger errors. Error $\sim \mathrm{O}\left(\Delta t^{2}\right)$.

- Need to take pretty small steps, so not very efficient. Better (more complicated) methods exist, e.g., "Runge-Kutta" and "implicit integration."

Particle in a force field

- Now consider a particle in a force field \mathbf{f}.
- In this case, the particle has:
- Mass, m
- Acceleration, $\overrightarrow{\mathbf{a}} \equiv \ddot{\mathbf{x}}=\frac{d \overrightarrow{\mathbf{v}}}{d t}=\frac{d^{2} \overrightarrow{\mathbf{x}}}{d t^{2}}$
- The particle obeys Newton's law: $\overrightarrow{\mathbf{f}}=m \overrightarrow{\mathbf{a}}=m \ddot{\mathbf{x}}$
- The force field \mathbf{f} can in general depend on the position and velocity of the particle as well as time.
■ Thus, with some rearrangement, we end up with:

$$
\ddot{\mathbf{x}}=\frac{\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}}, \dot{\mathbf{x}}, t)}{m}
$$

Second order equations

This equation:

$$
\ddot{\mathbf{x}}=\frac{\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}}, \dot{\mathbf{x}}, t)}{m}
$$

is a second order differential equation.
Our solution method, though, worked on first order differential equations.
We can rewrite this as:

$$
\left[\begin{array}{c}
\dot{\mathbf{x}}=\overrightarrow{\mathbf{v}} \\
\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{v}}, t) \\
m
\end{array}\right]
$$

where we have added a new variable \mathbf{v} to get a pair of coupled first order equations.

Phase space

$$
\begin{aligned}
& {[\overrightarrow{\mathbf{x}}] \quad \text { Concatenate } \mathbf{x} \text { and } \mathbf{v} \text { to make a 6- }} \\
& \text { vector: position in phase space. } \\
& {[\dot{\mathbf{x}} \quad \square \text { Taking the time derivative: another }} \\
& \text { 6-vector. } \\
& {\left[\begin{array}{c}
\dot{\mathbf{x}} \\
\dot{\mathbf{v}}
\end{array}\right]=\left[\begin{array}{c}
\overrightarrow{\mathbf{v}} \\
\overrightarrow{\mathbf{f}} / m
\end{array}\right] \quad \begin{array}{l}
\text { A vanilla } 1^{\text {st }} \text {-order differential } \\
\text { equation. }
\end{array}}
\end{aligned}
$$

Differential equation solver

Starting with:

$$
\left[\begin{array}{c}
\dot{\mathbf{x}} \\
\dot{\mathbf{v}}
\end{array}\right]=\left[\begin{array}{c}
\overrightarrow{\mathbf{v}} \\
\overrightarrow{\mathbf{f}} / m
\end{array}\right]
$$

Applying Euler's method:

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}(t+\Delta t) & =\overrightarrow{\mathbf{x}}(t)+\Delta t \cdot \dot{\mathbf{x}}(t) \\
\dot{\mathbf{x}}(t+\Delta t) & =\dot{\mathbf{x}}(t)+\Delta t \cdot \ddot{\mathbf{x}}(t)
\end{aligned}
$$

And making substitutions:

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}(t+\Delta t) & =\overrightarrow{\mathbf{x}}(t)+\Delta t \cdot \overrightarrow{\mathbf{v}}(t) \\
\dot{\mathbf{x}}(t+\Delta t) & =\dot{\mathbf{x}}(t)+\Delta t \cdot \overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}}, \dot{\mathbf{x}}, t) / m
\end{aligned}
$$

Writing this as an iteration, we have:

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}^{i+1}=\vec{x}^{i}+\Delta t \cdot \overrightarrow{\mathbf{v}}^{i} \\
& \overrightarrow{\mathbf{v}}^{i+1}=\overrightarrow{\mathbf{v}}^{i}+\Delta t \cdot \frac{\overrightarrow{\mathbf{f}}^{i}}{m}
\end{aligned}
$$

Again, performs poorly for large Δt.

Particle structure

How do we represent a particle?

Single particle solver interface

Particle systems

In general, we have a particle system consisting of n particles to be managed over time:

Particle system solver interface

For n particles, the solver interface now looks like:

Particle system diff. eq. solver

We can solve the evolution of a particle system again using the Euler method:

$$
\left[\begin{array}{c}
\overrightarrow{\mathbf{x}}_{1}^{i+1} \\
\overrightarrow{\mathbf{v}}_{1}^{i+1} \\
\vdots \\
\overrightarrow{\mathbf{x}}_{i+1}^{i+1} \\
\overrightarrow{\mathbf{v}}_{n}^{i+1}
\end{array}\right]=\left[\begin{array}{c}
\overrightarrow{\mathbf{x}}_{1}^{i} \\
\overrightarrow{\mathbf{v}}_{1}^{i} \\
\vdots \\
\vdots \\
\overrightarrow{\mathbf{x}}_{n}^{i} \\
\overrightarrow{\mathbf{v}}_{n}^{i}
\end{array}\right]+\Delta t\left[\begin{array}{c}
\overrightarrow{\mathbf{v}}_{1}^{i} \\
\overrightarrow{\mathbf{f}}_{1}^{i} / m_{1} \\
\vdots \\
\overrightarrow{\mathbf{v}}_{n}^{i} \\
\overrightarrow{\mathbf{f}}_{n}^{i} / m_{n}
\end{array}\right]
$$

Forces

■ Each particle can experience a force which sends it on its merry way.
■ Where do these forces come from? Some examples:
■ Constant (gravity)
\square Position/time dependent (force fields)
$■$ Velocity-dependent (drag)
■ Combinations (Damped springs)

■ How do we compute the net force on a particle?

Particle systems with forces

- Force objects are black boxes that point to the particles they influence and add in their contributions.
- We can now visualize the particle system with force objects:

Gravity and viscous drag

The force due to gravity is simply:

$$
\begin{gathered}
\overrightarrow{\mathbf{f}}_{g r a v}=m \overrightarrow{\mathbf{G}} \\
\mathrm{p}->\mathbf{f}+=\mathrm{p}->\mathrm{m} * \mathrm{~F}->\mathbf{G}
\end{gathered}
$$

Often, we want to slow things down with viscous drag:

$$
\begin{gathered}
\overrightarrow{\mathbf{f}}_{\text {drag }}=-k \overrightarrow{\mathbf{v}} \\
\mathrm{p}->\mathbf{f}-=\mathrm{F}->\mathbf{k} \text { * } \mathrm{p}->\mathbf{v}
\end{gathered}
$$

Damped spring

Recall the equation for the force due to a spring: $f=-k_{\text {spring }}(|\Delta \overrightarrow{\mathbf{x}}|-r)$
We can augment this with damping: $f=-\left[k_{\text {spring }}(|\Delta \overrightarrow{\mathbf{x}}|-r)+k_{\text {damp }}|\overrightarrow{\mathbf{v}}|\right]$
The resulting force equations for a spring between two particles become:

$$
\begin{aligned}
& \overrightarrow{\mathbf{f}}_{1}=-\left[k_{\text {spring }}(|\Delta \overrightarrow{\mathbf{x}}|-r)+k_{\text {damp }}\left(\frac{\Delta \overrightarrow{\mathbf{v}} \cdot \Delta \overrightarrow{\mathbf{x}}}{|\Delta \overrightarrow{\mathbf{x}}|}\right)\right] \frac{\Delta \overrightarrow{\mathbf{x}}}{|\Delta \overrightarrow{\mathbf{x}}|} \\
& \overrightarrow{\mathbf{f}}_{2}=-\overrightarrow{\mathbf{f}}_{1} \\
& r=\text { rest length }
\end{aligned}
$$

derivEval

Clear forces

Loop over particles, zero force accumulators
Calculate forces
Sum all forces into accumulators
Return derivatives
Loop over particles, return \mathbf{v} and \mathbf{f} / m

$$
\left[\begin{array}{c}
\overrightarrow{\mathbf{v}}_{1} \\
\overrightarrow{\mathbf{f}}_{1} / m_{1}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{\mathbf{v}}_{2} \\
\overrightarrow{\mathbf{f}}_{2} / m_{2}
\end{array}\right] \cdots\left[\begin{array}{c}
\overrightarrow{\mathbf{v}}_{n} \\
\overrightarrow{\mathbf{f}}_{n} / m_{n}
\end{array}\right]
$$

Return derivatives
to solver

1 Clear force accumulators

$\left[\begin{array}{c}\overrightarrow{\mathbf{x}}_{1} \\ \overrightarrow{\mathbf{V}}_{1} \\ \hline \overrightarrow{\mathbf{f}}_{1} \\ m_{1}\end{array}\right]\left[\begin{array}{l}\overrightarrow{\mathbf{x}}_{2} \\ \overrightarrow{\mathbf{V}}_{2}\end{array}\right]\left[\begin{array}{l} \\ \overrightarrow{\mathbf{f}}_{2} \\ m_{2}\end{array}\right] \cdots\left[\begin{array}{l}\overrightarrow{\mathbf{x}}_{n} \\ \overrightarrow{\mathbf{V}}_{n} \\ \overrightarrow{\mathbf{f}_{n}} \\ m_{n}\end{array}\right]$
Apply forces to particles

$$
\left[\begin{array}{c}
\overrightarrow{\mathbf{x}}_{1} \\
\overrightarrow{\mathbf{v}}_{1} \\
\overrightarrow{\mathbf{f}}_{1} \\
m_{1}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{\mathbf{x}}_{2} \\
\overrightarrow{\mathbf{v}}_{2} \\
\overrightarrow{\mathbf{f}}_{2} \\
m_{2}
\end{array}\right] \cdots\left[\begin{array}{c}
\overrightarrow{\mathbf{x}}_{n} \\
\overrightarrow{\mathbf{v}}_{n} \\
\overrightarrow{\mathbf{f}}_{n} \\
m_{n}
\end{array}\right]
$$

Bouncing off the walls

- Add-on for a particle simulator
 -For now, just simple point-plane collisions

A plane is fully specified by any point \mathbf{P} on the plane and its normal \mathbf{N}.

Collision Detection

How do you decide when you've crossed a plane?

Normal and tangential velocity

To compute the collision response, we need to consider the normal and tangential components of a particle's velocity.

$$
\begin{aligned}
& \overrightarrow{\mathbf{v}}_{\mathrm{N}}=(\overrightarrow{\mathbf{N}} \bullet \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{N}} \\
& \overrightarrow{\mathbf{v}}_{\mathrm{T}}=\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{v}}_{\mathrm{N}}
\end{aligned}
$$

Collision Response

Without backtracking, the response may not be enough to bring a particle to the other side of a wall.
In that case, detection should include a velocity check:

Particle frame of reference

- Let's say we had our robot arm example and we wanted to launch particles from its tip.

■ How would we go about starting the particles from the right place?
■ First, we have to look at the coordinate systems in the OpenGL pipeline...

The OpenGL geometry pipeline

Projection and modelview matrices

■ Any piece of geometry will get transformed by a sequence of matrices before drawing:

$$
\mathbf{p}^{\prime}=\mathbf{M}_{\text {project }} \mathbf{M}_{\text {view }} \mathbf{M}_{\text {model }} \mathbf{p}
$$

■ The first matrix is OpenGL's GL_PROJECTION matrix.

- The second two matrices, taken as a product, are maintained on OpenGL's GL_MODELVIEW stack:

$$
\mathbf{M}_{\text {modelview }}=\mathbf{M}_{\text {view }} \mathbf{M}_{\text {model }}
$$

Robot arm code, revisited

■ Recall that the code for the robot arm looked something like:

```
glRotatef( theta, 0.0, 1.0, 0.0 );
base(h1);
glTranslatef( 0.0, h1, 0.0 );
glRotatef( phi, 0.0, 0.0, 1.0 );
upper_arm(h2);
glTranslatef( 0.0, h2, 0.0 );
glRotatef( psi, 0.0, 0.0, 1.0 );
lower_arm(h3);
```

- All of the GL calls here modify the modelview matrix.

■ Note that even before these calls are made, the modelview matrix has been modified by the viewing transformation, $\mathbf{M}_{\text {view }}$.

Computing particle launch point

To find the world coordinate position of the end of the robot arm, you need to follow a series of steps:

1. Figure out what $\mathbf{M}_{\text {view }}$ before drawing your model.
```
Mat4f matCam = ps>glGetMatrix(GL_MODELVIEW_MATRIX);
```

2. Draw your model and add one more transformation to the tip of the robot arm.
glTranslatef(0.0, h3, 0.0);
3. Compute $\mathbf{M}_{\text {model }}=\mathbf{M}_{\text {view }}^{-1} \mathbf{M}_{\text {modelview }}$
```
Mat4f particleXform = ps->getWorldXform( matCam);
```

4. Transform a point at the origin by the resulting matrix.
```
Vec4f particleOrigin = particleXform * Vec4f(0,0,0,1);
// 4 th coordinate should be 1.0 -- ignore
```

Now you're ready to launch a particle from that last computed point!

Next lecture

- Topic:

Parametric Curves:
C2 interpolating curves.
How can we make splines that interpolate the control points, and have C 2 continuity everywhere?

- Reading:
- Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.
[Course reader, pp. 239-247]

