Parametric Representations

- 3 basic representation strategies:
 - Explicit: $y = mx + b$
 - Implicit: $ax + by + c = 0$
 - Parametric: $P = P_0 + t(P_1 - P_0)$

- Advantages of parametric forms
 - More degrees of freedom
 - Directly transformable
 - Dimension independent
 - No infinite slope problems
 - Separates dependent and independent variables
 - Inherently bounded
 - Easy to express in vector and matrix form
 - Common form for many curves and surfaces
Algebraic Representation

- All of these curves are just parametric algebraic polynomials expressed in different bases
- Parametric linear curve (in E^3)
 \[p(u) = au + b \]
 \[x = a_x u + b_x \]
 \[y = a_y u + b_y \]
 \[z = a_z u + b_z \]

- Parametric cubic curve (in E^3)
 \[p(u) = au^3 + bu^2 + cu + d \]
 \[x = a_x u^3 + b_x u^2 + c_x u + d_x \]
 \[y = a_y u^3 + b_y u^2 + c_y u + d_y \]
 \[z = a_z u^3 + b_z u^2 + c_z u + d_z \]

- Basis (monomial or power)
 \[
 \begin{bmatrix}
 u & 1 \\
 u^3 & u^2 & u & 1
 \end{bmatrix}
 \]
Hermite Curves

- 12 degrees of freedom (4 3-d vector constraints)
- Specify endpoints and tangent vectors at endpoints

\[
p(0) = d
\]

\[
p(1) = a + b + c + d
\]

\[
p''(0) = c
\]

\[
p''(1) = 3a + 2b + c
\]

- Solving for the coefficients:

\[
a = 2p(0) - 2p(1) + p''(0) + p''(1)
\]

\[
b = -3p(0) + 3p(1) - 2p''(0) - p''(1)
\]

\[
c = p''(0)
\]

\[
d = p(0)
\]
Hermite Curves - Hermite Basis

- Substituting for the coefficients and collecting terms gives

\[p(u) = (2u^3 - 3u^2 + 1)p(0) + (-2u^3 + 3u^2)p(1) + (u^3 - 2u^2 + u)p''(0) + (u^3 - u^2)p''(1) \]

- Call

\[
\begin{align*}
H_1(u) &= (2u^3 - 3u^2 + 1) \\
H_2(u) &= (-2u^3 + 3u^2) \\
H_3(u) &= (u^3 - 2u^2 + u) \\
H_4(u) &= (u^3 - u^2)
\end{align*}
\]

the Hermite blending functions or basis functions

- Then

\[p(u) = H_1(u)p(0) + H_2(u)p(1) + H_3(u)p''(0) + H_4(u)p''(1) \]
Hermite Curves - Matrix Form

Putting this in matrix form

\[\mathbf{H} = \begin{bmatrix} H_1(u) & H_2(u) & H_3(u) & H_4(u) \end{bmatrix} \]

\[= \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \]

\[= \mathbf{U} \mathbf{M}_H \]

\(\mathbf{M}_H \) is called the Hermite characteristic matrix.

Collecting the Hermite geometric coefficients into a geometry vector \(\mathbf{B} \), we have a matrix formulation for the Hermite curve \(\mathbf{p}(u) \)

\[\mathbf{B} = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \\ \mathbf{p}'(0) \\ \mathbf{p}'(1) \end{bmatrix} \]

\[\mathbf{p}(u) = \mathbf{U} \mathbf{M}_H \mathbf{B} \]
Hermite and Algebraic Forms

- M_H transforms geometric coefficients ("coordinates") from the Hermite basis to the algebraic coefficients of the monomial basis

\[
A = \begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
\]

\[
p(u) = UA = UM_HB
\]

\[
A = M_HB
\]

\[
B = M_H^{-1}A
\]

\[
M_H^{-1} = \begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{bmatrix}
\]
Cubic Bézier Curves

- Specifying tangent vectors at endpoints isn’t always convenient for geometric modeling.
- We may prefer making all the geometric coefficients points, let’s call them **control points**, and label them \(p_0, p_1, p_2, \) and \(p_3 \).
- For cubic curves, we can proceed by letting the tangents at the endpoints for the Hermite curve be defined by a vector between a pair of control points, so that:

\[
\begin{align*}
\mathbf{p}(0) &= \mathbf{p}_0 \\
\mathbf{p}(1) &= \mathbf{p}_3 \\
\mathbf{p}^u(0) &= k_1 (\mathbf{p}_1 - \mathbf{p}_0) \\
\mathbf{p}^u(1) &= k_2 (\mathbf{p}_3 - \mathbf{p}_2)
\end{align*}
\]
Cubic Bézier Curves

Substituting this into the Hermite curve expression and rearranging, we get

\[p(u) = [(2 - k_1)u^3 + (2k_1 - 3)u^2 - k_1u + 1]p_0 + [k_1u^3 - 2k_1u^2 + k_1u]p_1 \\
+ \left[-k_2u^3 + k_2u^2\right]p_2 + \left[(k_2 - 2)u^3 + (3 - k_2)u^2\right]p_3 \]

In matrix form, this is

\[p(u) = UM_B P \]

\[M_B = \begin{bmatrix}
2 - k_1 & k_1 & -k_2 & k_2 - 2 \\
2k_1 - 3 & -2k_1 & k_2 & 3 - k_2 \\
-k_1 & k_1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} \]

\[P = \begin{bmatrix}
p_0 \\
p_1 \\
p_2 \\
p_3
\end{bmatrix} \]
Cubic Bézier Curves

What values should we choose for k_1 and k_2?

If we let the control points be evenly spaced in parameter space, then p_0 is at $u = 0$, p_1 at $u = 1/3$, p_2 at $u = 2/3$ and p_3 at $u = 1$. Then

$$p''(0) = (p_1 - p_0)/(1/3 - 0) = 3(p_1 - p_0)$$
$$p''(1) = (p_3 - p_2)/(1 - 2/3) = 3(p_3 - p_2)$$

and $k_1 = k_2 = 3$, giving a nice symmetric characteristic matrix:

$$M_B = \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}$$

So

$$p(u) = (-u^3 + 3u^2 - 3u + 1)p_0 + (3u^3 - 6u^2 + 3u)p_1 + (-3u^3 + 3u^2)p_2 + u^3p_3$$
General Bézier Curves

- This can be rewritten as

\[p(u) = (1 - u)^3 p_0 + 3u(1 - u)^2 p_1 + 3u^2(1 - u)p_2 + u^3 p_3 = \sum_{i=0}^{3} \binom{3}{i} u^i (1 - u)^{3-i} p_i \]

- Note that the binomial expansion of

\[(u + (1 - u))^n \] is \[\sum_{i=0}^{n} \binom{n}{i} u^i (1 - u)^{n-i} \]

- This suggests a general formula for Bézier curves of arbitrary degree

\[p(u) = \sum_{i=0}^{n} \binom{n}{i} u^i (1 - u)^{n-i} p_i \]
General Bézier Curves

- The binomial expansion gives the Bernstein basis (or Bézier blending functions) $B_{i,n}$ for arbitrary degree Bézier curves

$$p(u) = \sum_{i=0}^{n} \binom{n}{i} u^i (1-u)^{n-i} p_i$$

$$B_{i,n}(u) = \binom{n}{i} u^i (1-u)^{n-i}$$

$$p(u) = \sum_{i=0}^{n} B_{i,n}(u) p_i$$

- Of particular interest to us (in addition to cubic curves):
 - Linear: $p(u) = (1-u)p_0 + up_1$
 - Quadratic: $p(u) = (1-u)^2p_0 + 2u(1-u)p_1 + u^2p_2$
Bézier Curve Properties

- Interpolates end control points, not middle ones
- Stays inside **convex hull** of control points
 - Important for many algorithms
 - Because it’s a convex combination of points, i.e. affine with positive weights
- Variation diminishing
 - Doesn’t “wiggle” more than control polygon
We can obtain a point on a Bézier curve by just evaluating the function for a given value of \(u \).

Fastest way, precompute \(A = M_B P \) once control points are known, then evaluate \(p(u_i) = [u_i^3 \ u_i^2 \ u_i \ 1] A \), \(i = 0, 1, 2, \ldots, n \) for \(n \) fixed increments of \(u \).

For better numerical stability, take e.g. a quadratic curve (for simplicity) and rewrite

\[
p(u) = (1 - u)^2 p_0 + 2u(1 - u)p_1 + u^2 p_2
\]

\[
= (1 - u)[(1 - u)p_0 + up_1] + u[(1 - u)p_1 + up_2]
\]

This is just a linear interpolation of two points, each of which was obtained by interpolating a pair of adjacent control points.
de Casteljau Algorithm

- This hierarchical linear interpolation works for general Bézier curves, as given by the following recurrence

\[p_{i,j} = (1 - u)p_{i,j-1} + up_{i+1,j-1} \]

\[
\begin{cases}
 i = 0, 1, 2, \ldots, n - j \\
 j = 1, 2, \ldots, n
\end{cases}
\]

where \(p_{i,0} \) \(i = 0, 1, 2, \ldots, n \) are the control points for a degree \(n \) Bézier curve and \(p_{0,n} = p(u) \)

- For efficiency this should not be implemented recursively.

- Useful for point evaluation in a recursive subdivision algorithm to render a curve since it generates the control points for the subdivided curves.
Starting with the control points
and a given value of u
In this example, $u \approx 0.25$
de Casteljau Algorithm

\[q_0(u) = (1 - u)p_0 + up_1 \]
\[q_1(u) = (1 - u)p_1 + up_2 \]
\[q_2(u) = (1 - u)p_2 + up_3 \]
de Casteljau Algorithm

\[
\mathbf{r}_0(u) = (1 - u)\mathbf{q}_0(u) + u\mathbf{q}_1(u)
\]

\[
\mathbf{r}_1(u) = (1 - u)\mathbf{q}_1(u) + u\mathbf{q}_2(u)
\]
de Casteljau Algorithm

\[\mathbf{p}(u) = (1 - u)\mathbf{r}_0(u) + u\mathbf{r}_1(u) \]
de Casteljau algorithm

\[p_0, p_1, p_2, p_3 \]

\[p(u) \]
How can you draw a curve?
- Generally no low-level support for drawing curves
- Can only draw line segments or individual pixels

Approximate the curve as a series of line segments
- Analogous to tessellation of a surface

Methods:
- Sample uniformly
- Sample adaptively
- Recursive Subdivision
Uniform Sampling

- Approximate curve with \(n \) line segments
 - \(n \) chosen in advance
 - Evaluate \(p_i = p(u_i) \) where \(u_i = \frac{i}{n} \quad i = 0,1,\ldots,n \)

- For an arbitrary cubic curve
 \[
 p_i = a\left(\frac{i^3}{n^3}\right) + b\left(\frac{i^2}{n^2}\right) + c\left(\frac{i}{n}\right) + d
 \]
 - Connect the points with lines

- Too few points?
 - Bad approximation
 - “Curve” is faceted

- Too many points?
 - Slow to draw too many line segments
 - Segments may draw on top of each other
Adaptive Sampling

- Use only as many line segments as you need
 - Fewer segments needed where curve is mostly flat
 - More segments needed where curve bends
 - No need to track bends that are smaller than a pixel

- Various schemes for sampling, checking results, deciding whether to sample more

- Or, use knowledge of curve structure:
 - Adapt by recursive subdivision
Recursive Subdivision

- Any cubic curve segment can be expressed as a Bézier curve
- Any piece of a cubic curve is itself a cubic curve
- Therefore:
 - Any Bézier curve can be broken up into smaller Bézier curves
 - But how…?
de Casteljau subdivision

de Casteljau construction points are the control points of two Bézier sub-segments
Adaptive subdivision algorithm

- Use de Casteljau construction to split Bézier segment
- Examine each half:
 - If flat enough: draw line segment
 - Else: recurse

- To test if curve is flat enough
 - Only need to test if hull is flat enough
 - Curve is guaranteed to lie within the hull
 - e.g., test how far the handles are from a straight segment
 - If it’s about a pixel, the hull is flat
Composite Curves

- Hermite and Bézier curves generalize line segments to higher degree polynomials. But what if we want more complicated curves than we can get with a single one of these? Then we need to build composite curves, like polylines but curved.

- Continuity conditions for composite curves
 - C^0 - The curve is continuous, i.e. the endpoints of consecutive curve segments coincide
 - C^1 - The tangent (derivative with respect to the parameter) is continuous, i.e. the tangents match at the common endpoint of consecutive curve segments
 - C^2 - The second parametric derivative is continuous, i.e. matches at common endpoints
 - G^0 - Same as C^0
 - G^1 - Derivatives wrt the coordinates are continuous. Weaker than C^1, the tangents should point in the same direction, but lengths can differ.
 - G^2 - Second derivatives wrt the coordinates are continuous
 - …
Composite Bézier Curves

- C^0, G^0 - Coincident end control points
- C^1 - $p_3 - p_2$ on first curve equals $p_1 - p_0$ on second
- G^1 - $p_3 - p_2$ on first curve proportional to $p_1 - p_0$ on second
- C^2, G^2 - More complex, use B-splines to automatically control continuity across curve segments
Polar form for Bézier Curves

- A much more useful point labeling scheme
- Start with knots, “interesting” values in parameter space
- For Bézier curves, parameter space is normally [0, 1], and the knots are at 0 and 1.

\[
\begin{array}{ccc}
0 & u & 1 \\
\text{knot} & \text{u} & \text{knot}
\end{array}
\]

- Now build a knot vector, a non-decreasing sequence of knot values.
- For a degree \(n \) Bézier curve, the knot vector will have \(n \) 0’s followed by \(n \) 1’s [0,0,…,0,1,1,…,1]
 - Cubic Bézier knot vector [0,0,0,1,1,1]
 - Quadratic Bézier knot vector [0,0,1,1]

- Polar labels for consecutive control points are sequences of \(n \) knots from the vector, incrementing the starting point by 1 each time
 - Cubic Bézier control points: \(p_0 = p(0,0,0), p_1 = p(0,0,1), p_2 = p(0,1,1), p_3 = p(1,1,1) \)
 - Quadratic Bézier control points: \(p_0 = p(0,0), p_1 = p(0,1), p_2 = p(1,1) \)
Polar form rules

- Polar values are symmetric in their arguments, i.e. all permutations of a polar label are equivalent.
 \(p(0,0,1) = p(0,1,0) = p(1,0,0) \), etc.
- Given \(p(u_1, u_2, \ldots, u_{n-1}, a) \) and \(p(u_1, u_2, \ldots, u_{n-1}, b) \), for any value \(c \) we can compute

 \[
 p(u_1, u_2, \ldots, u_{n-1}, c) = \frac{(b - c)p(u_1, u_2, \ldots, u_{n-1}, a) + (c - a)p(u_1, u_2, \ldots, u_{n-1}, b)}{b - a}
 \]

 That is, \(p(u_1, u_2, \ldots, u_{n-1}, c) \) is an affine combination of \(p(u_1, u_2, \ldots, u_{n-1}, a) \) and \(p(u_1, u_2, \ldots, u_{n-1}, b) \).

Examples:

- \(p(0, u, 1) = (1 - u)p(0, 0, 1) + up(0, 1, 1) \)
- \(p(0, u) = \frac{(4 - u)p(0, 2) + (u - 2)p(0, 4)}{2} \)
- \(p(1, 2, 3, u) = \frac{(u_2 - u)p(2, 1, 3, u_1) + (u - u_1)p(3, 2, 1, u_2)}{u_2 - u_1} \)
de Casteljau in polar form

\[p(0,0,0) \]

\[p(0,0,1) \]

\[p(0,1,1) \]

\[p(1,1,1) \]
de Casteljau in polar form
de Casteljau in polar form

\[p(0,0,0) \rightarrow p(0,0,u) \rightarrow p(0,u,u) \rightarrow p(u,u,1) \rightarrow p(u,1,1) \rightarrow p(1,1,1) \]
de Casteljau in polar form

\[\mathbf{p}(0,0,0) \]
\[\mathbf{p}(0,0,1) \]
\[\mathbf{p}(0,u,1) \]
\[\mathbf{p}(u,u,1) \]
\[\mathbf{p}(0,1,1) \]
\[\mathbf{p}(u,1,1) \]
\[\mathbf{p}(1,1,1) \]
de Casteljau in polar form
Suppose we want to glue two cubic Bézier curves together in a way that automatically guarantees C^2 continuity everywhere. We can do this easily in polar form.

Start with parameter space for the pair of curves:
- 1st curve [0,1], 2nd curve (1,2]

Make a knot vector: [000,1,222]

Number control points as before:
- \(p(0,0,0), p(0,0,1), p(0,1,2), p(1,2,2), p(2,2,2) \)

Okay, 5 control points for the two curves, so 3 of them must be shared since each curve needs 4. That’s what having only 1 copy of knot 1 achieves, and that’s what gives us C^2 continuity at the join point at \(u = 1 \)
de Boor algorithm in polar form

\[u = 0.5 \]

Knot vector = \([0,0,0,1,2,2,2]\)
Inserting a knot

\[u = 0.5 \]

Knot vector = \([0, 0, 0, 0.5, 1, 2, 2, 2]\)
Inserting a 2nd knot

\[u = 0.5 \]

Knot vector = \([0, 0, 0, 0.5, 0.5, 1, 2, 2, 2]\]
Inserting a 3rd knot to get a point

\[u = 0.5 \]

Knot vector = \([0,0,0,0.5,0.5,0.5,1,2,2,2]\)
Recovering the Bézier curves

Knot vector = [0, 0, 0, 1, 1, 2, 2, 2]
Recovering the Bézier curves

Knot vector = [0, 0, 0, 1, 1, 1, 2, 2, 2]
B-Splines

B-splines are a generalization of Bézier curves that allows grouping them together with continuity across the joints.

The B in B-splines stands for basis, they are based on a very general class of spline basis functions.

Splines is a term referring to composite parametric curves with guaranteed continuity.

The general form is similar to that of Bézier curves.

Given $m + 1$ values u_i in parameter space (these are called knots), a degree n B-spline curve is given by:

$$p(u) = \sum_{i=0}^{m-n-1} N_{i,n}(u)p_i$$

$$N_{i,0}(u) = \begin{cases} 1 & u_i \leq u < u_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$N_{i,n}(u) = \frac{u - u_i}{u_{i+n} - u_i} N_{i,n-1}(u) + \frac{u_{i+n+1} - u}{u_{i+n+1} - u_{i+1}} N_{i+1,n-1}(u)$$

where $m \geq i + n + 1$
Uniform periodic basis

Let $N(u)$ be a global basis function for our uniform cubic B-splines.

- $N(u)$ is piecewise cubic.

$$N(u) = \begin{cases}
\frac{1}{6}u^3 & \text{if } u < 1 \\
-\frac{1}{2}(u-1)^3 + \frac{1}{2}(u-1)^2 + \frac{1}{2}(u-1) + \frac{1}{6} & \text{if } u < 2 \\
\frac{1}{2}(u-2)^3 - (u-2)^2 + \frac{2}{3} & \text{if } u < 3 \\
-\frac{1}{6}(u-3)^3 + \frac{1}{2}(u-3)^2 - \frac{1}{2}(u-3) + \frac{1}{6} & \text{otherwise}
\end{cases}$$

$$p(u) = N(u) \ p_3 + N(u+1) \ p_2 + N(u+2) \ p_1 + N(u+3) \ p_0$$
Uniform periodic B-Spline

\[p(u) = (-1/6u^3 + 1/2u^2 - 1/2u + 1/6)p_0 + \\
(1/2u^3 - u^2 + 2/3)p_1 + \\
(-1/2u^3 + 1/2u^2 + 1/2u + 1/6)p_2 + \\
(1/6u^3)p_3 \]