
University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell

Parametric Curves

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 2

Parametric Representations
3 basic representation strategies:

Explicit: y = mx + b
Implicit: ax + by + c = 0
Parametric: P = P0 + t (P1 - P0)

Advantages of parametric forms
More degrees of freedom
Directly transformable
Dimension independent
No infinite slope problems
Separates dependent and independent variables
Inherently bounded
Easy to express in vector and matrix form
Common form for many curves and surfaces

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 3

Algebraic Representation
All of these curves are just parametric algebraic polynomials expressed
in different bases
Parametric linear curve (in E3)

Parametric cubic curve (in E3)

Basis (monomial or power)

!

x = axu
3

+ bxu
2

+ cxu + dx

y = ayu
3

+ byu
2

+ cyu + dy

z = azu
3

+ bzu
2

+ czu + dz

!

x = axu + bx

y = ayu + by

z = azu + bz

!

p(u) = au + b

!

p(u) = au
3

+ bu
2

+ cu + d

!

u 1[]

u
3

u
2

u 1[]

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 4

Hermite Curves
12 degrees of freedom (4 3-d vector constraints)
Specify endpoints and tangent vectors at endpoints

Solving for the coefficients:
!

p(0) = d

p(1) = a + b+ c + d

p
u
(0) = c

p
u
(1) = 3a + 2b+ c

!

a = 2p(0) " 2p(1) + p
u
(0) + p

u
(1)

b = "3p(0) + 3p(1) " 2p
u
(0) "p

u
(1)

c = p
u
(0)

d = p(0)

!

p
u
(u) "

dp

du
(u)

•

•
pu(0)

u = 0

u = 1

p(0)

p(1)

pu(1)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 5

Hermite Curves - Hermite Basis
Substituting for the coefficients and collecting terms gives

Call

the Hermite blending functions or basis functions

Then

!

p(u) = (2u
3
" 3u

2
+1)p(0) + ("2u

3
+ 3u

2
)p(1) + (u

3
" 2u

2
+ u)p

u
(0) + (u

3
" u

2
)p

u
(1)

!

H
1
(u) = (2u

3
" 3u

2
+1)

H
2
(u) = ("2u

3
+ 3u

2
)

H
3
(u) = (u

3
" 2u

2
+ u)

H
4
(u) = (u

3
" u

2
)

!

p(u) =H
1
(u)p(0) +H

2
(u)p(1) +H

3
(u)p

u
(0) +H

4
(u)p

u
(1)

H1 H2

H3

H4

n

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 6

Hermite Curves - Matrix Form
Putting this in matrix form

MH is called the Hermite characteristic matrix
Collecting the Hermite geometric
coefficients into a geometry vector B,
we have a matrix formulation for
the Hermite curve p(u)

!

H = H
1
(u) H

2
(u) H

3
(u) H

4
(u)[]

= u
3

u
2

u 1[]

2 "2 1 1

"3 3 "2 "1

0 0 1 0

1 0 0 0

$

%
%
%
%

&

'

(
(
(
(

=UM
H

!

B =

p(0)

p(1)

pu(0)

pu(1)

"

$
$
$
$

%

&

'
'
'
'

p(u) =UM
H
B

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 7

Hermite and Algebraic Forms

MH transforms geometric coefficients
(“coordinates”) from the Hermite basis to the
algebraic coefficients of the monomial basis

!

A =

a

b

c

d

"

$
$
$
$

%

&

'
'
'
'

p(u) =UA =UM
H
B

A =M
H
B

B =M
H

(1A

!

M
H

"1
=

0 0 0 1

1 1 1 1

0 0 1 0

3 2 1 0

$

%
%
%
%

&

'

(
(
(
(

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 8

Cubic Bézier Curves
Specifying tangent vectors at endpoints isn’t always convenient for
geometric modeling
We may prefer making all the geometric coefficients points, let’s call
them control points, and label them p0, p1, p2, and p3

For cubic curves, we can proceed by letting the tangents at the
endpoints for the Hermite curve be defined by a vector between a pair
of control points, so that:

!

p(0) = p
0

p(1) = p
3

p
u
(0) = k

1
(p
1
"p

0
)

p
u
(1) = k

2
(p

3
"p

2
) p0

p1

p2

• p3
p(u)

k2

k1

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 9

Cubic Bézier Curves

Substituting this into the Hermite curve expression
and rearranging, we get

In matrix form, this is
!

p(u) = 2 " k
1()u3 + 2k

1
" 3()u2 " k1u +1[]p0 + k

1
u
3
" 2k

1
u
2 + k

1
u[]p1

+ "k
2
u
3 + k

2
u
2[]p2 + k

2
" 2()u3 + 3" k

2()u2[]p3

!

p(u) =UM
B
P

!

M
B

=

2 " k
1

k
1

"k
2

k
2
" 2

2k
1
" 3 "2k

1
k
2

3" k
2

"k
1

k
1

0 0

1 0 0 0

$

%
%
%
%

&

'

(
(
(
(

!

P =

p
0

p
1

p
2

p
3

"

$
$
$
$

%

&

'
'
'
'

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 10

Cubic Bézier Curves
What values should we choose for k1 and k2?
If we let the control points be evenly spaced in parameter
space, then p0 is at u = 0, p1 at u = 1/3, p2 at u = 2/3 and p3
at u = 1. Then

 and k1 = k2 = 3, giving a nice symmetric characteristic
matrix:

So

!

M
B

=

"1 3 "3 1

3 "6 3 0

"3 3 0 0

1 0 0 0

$

%
%
%
%

&

'

(
(
(
(

!

p(u) = "u
3 + 3u2 " 3u +1() p0 + 3u

3
" 6u

2 + 3u()p1 + "3u
3 + 3u2()p2 + u3p3

!

p
u
(0) = (p

1
"p

0
) (1/3" 0) = 3(p

1
"p

0
)

p
u
(1) = (p

3
"p

2
) (1" 2 /3) = 3(p

3
"p

2
)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 11

General Bézier Curves
This can be rewritten as

Note that the binomial expansion of

(u + (1 - u))n is

 This suggests a general formula for Bézier curves
of arbitrary degree

!

p(u) = (1" u)3p
0

+ 3u(1" u)2p
1

+ 3u2(1" u)p
2

+ u3p
3

=
3

i

$
%
&

'
(u

i
1" u()

3" i
p
i

i= 0

3

)

!

n

i

"

$
%

&
' u

i
1(u()

n(i

i= 0

n

)

!

p(u) =
n

i

"

$
%

&
' u

i
1(u()

n(i
p
i

i= 0

n

)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 12

General Bézier Curves
The binomial expansion gives the Bernstein basis (or Bézier blending
functions) Bi,n for arbitrary degree Bézier curves

Of particular interest to us (in addition to cubic curves):
Linear: p(u) = (1 - u)p0 + up1
Quadratic: p(u) = (1 - u)2p0 + 2u(1 - u)p1 + u2p2

!

p(u) =
n

i

"

$
%

&
' u

i
1(u()

n(i
p
i

i= 0

n

)

B
i,n
(u) =

n

i

"

$
%

&
' u

i
1(u()

n(i

p(u) = B
i,n
(u) p

i

i= 0

n

)

Cubic Bézier
Blending Functions

B0,3

B1,3 B2,3

B3,3
n

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 13

Bézier Curve Properties
Interpolates end control points, not middle ones
Stays inside convex hull of control points

Important for many algorithms
Because it’s a convex
combination of points,
i.e. affine with positive weights

Variation diminishing
Doesn’t “wiggle” more
 than control polygon

p0

p1

p2

p3

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 14

Rendering Bézier Curves
We can obtain a point on a Bézier curve by just evaluating
the function for a given value of u
Fastest way, precompute A=MBP once control points are
known, then evaluate p(ui)=[ui

3 ui
2 ui 1]A, i = 0,1,2,…,n

for n fixed increments of u
For better numerical stability, take e.g. a quadratic curve
(for simplicity) and rewrite

This is just a linear interpolation of two points, each of
which was obtained by interpolating a pair of adjacent
control points!

p(u) = (1" u)
2
p
0

+ 2u(1" u)p
1
+ u

2
p
2

= (1" u)[(1" u)p
0

+ up
1
]+ u[(1" u)p

1
+ up

2
]

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 15

de Casteljau Algorithm
This hierarchical linear interpolation works for general
Bézier curves, as given by the following recurrence

where pi,0 i = 0,1,2,…,n are the control points for a
degree n Bézier curve and p0,n = p(u)
For efficiency this should not be implemented recursively.
Useful for point evaluation in a recursive subdivision
algorithm to render a curve since it generates the control
points for the subdivided curves.

!

pi, j = (1" u)pi, j"1 + upi+1, j"1
i = 0,1,2,K,n " j

j =1,2,K,n

$
%

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 16

de Casteljau Algorithm

p0

p1

p2

p3

Starting with the control points
and a given value of u

In this example, u≈0.25

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 17

de Casteljau Algorithm

p0

q0

p1

p2

p3

q2

q1

!

q
0
(u) = (1" u)p

0
+ up

1

q
1
(u) = (1" u)p

1
+ up

2

q
2
(u) = (1" u)p

2
+ up

3

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 18

de Casteljau Algorithm

q0

q2

q1

r1

r0

!

r
0
(u) = (1" u)q

0
(u) + uq

1
(u)

r
1
(u) = (1" u)q

1
(u) + uq

2
(u)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 19

de Casteljau Algorithm

r1p(u)

r0
•

!

p(u) = (1" u)r
0
(u) + ur

1
(u)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 20

de Casteljau algorihm

•
p0

p1

p2

p3

p(u)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 21

Drawing Bézier Curves

How can you draw a curve?
Generally no low-level support for drawing curves
Can only draw line segments or individual pixels

Approximate the curve as a series of line segments
Analogous to tessellation of a surface
Methods:

Sample uniformly
Sample adaptively
Recursive Subdivision

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 22

Uniform Sampling
Approximate curve with n line segments

n chosen in advance
Evaluate

For an arbitrary cubic curve

Connect the points with lines
Too few points?

Bad approximation
“Curve” is faceted

Too many points?
Slow to draw too many line segments
Segments may draw on top of each other

p4

p0

p1

p2

p3

p(u)

!

p
i
= p(u

i
) where u

i
=
i

n
i = 0,1,...,n

!

p
i
= a i3 n3() + b i2 n2() + c i n() + d

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 23

Adaptive Sampling

Use only as many line segments as you need
Fewer segments needed where curve is mostly flat
More segments needed where curve bends
No need to track bends that are smaller than a pixel

Various schemes for sampling,
checking results, deciding whether
to sample more

Or, use knowledge of curve structure:
Adapt by recursive subdivision

p(u)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 24

Recursive Subdivision

Any cubic curve segment can be expressed as a
Bézier curve
Any piece of a cubic curve is itself a cubic curve
Therefore:

Any Bézier curve can be broken up into smaller Bézier
curves
But how…?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 25

de Casteljau construction
points are the control points
of two Bézier sub-segments

xp0

p1

p2

p3

de Casteljau subdivision

q0
r0

r1

q2

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 26

Adaptive subdivision algorithm

Use de Casteljau construction to split Bézier
segment
Examine each half:

If flat enough: draw line segment
Else: recurse

To test if curve is flat enough
Only need to test if hull is flat enough

Curve is guaranteed to lie within the hull
e.g., test how far the handles are from a straight
segment

If it’s about a pixel, the hull is flat

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 27

Composite Curves
Hermite and Bézier curves generalize line segments to higher degree
polynomials. But what if we want more complicated curves than we
can get with a single one of these? Then we need to build composite
curves, like polylines but curved.
Continuity conditions for composite curves

C0 - The curve is continuous, i.e. the endpoints of consecutive curve
segments coincide
C1 - The tangent (derivative with respect to the parameter) is continuous,
i.e. the tangents match at the common endpoint of consecutive curve
segments
C2 - The second parametric derivative is continuous, i.e. matches at
common endpoints
G0 - Same as C0

G1 - Derivatives wrt the coordinates are continuous. Weaker than C1, the
tangents should point in the same direction, but lengths can differ.
G2 - Second derivatives wrt the coordinates are continuous
…

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 28

Composite Bézier Curves
C0, G0 - Coincident end control points
C1 - p3 - p2 on first curve equals p1 - p0 on second
G1 - p3 - p2 on first curve proportional to p1 - p0 on second
C2, G2 - More complex, use B-splines to automatically
control continuity across curve segments

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 29

Polar form for Bézier Curves
A much more useful point labeling scheme
Start with knots, “interesting” values in parameter space
For Bézier curves, parameter space is normally [0, 1], and the knots
are at 0 and 1.

Now build a knot vector, a non-decreasing sequence of knot values.
For a degree n Bézier curve, the knot vector will have n 0’s followed
by n 1’s [0,0,…,0,1,1,…,1]

Cubic Bézier knot vector [0,0,0,1,1,1]
Quadratic Bézier knot vector [0,0,1,1]

Polar labels for consecutive control points are sequences of n knots
from the vector, incrementing the starting point by 1 each time

Cubic Bézier control points: p0 = p(0,0,0), p1 = p(0,0,1),
 p2 = p(0,1,1), p3 = p(1,1,1)

Quadratic Bézier control points: p0 = p(0,0), p1 = p(0,1), p2 = p(1,1)

u0 1
knot knot

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 30

Polar form rules
Polar values are symmetric in their arguments, i.e. all
permutations of a polar label are equivalent.
p(0,0,1) = p(0,1,0) = p(1,0,0), etc.
Given p(u1, u2,…,un-1, a) and p(u1, u2,…,un-1, b), for any
value c we can compute

That is, p(u1, u2,…,un-1, c) is an affine combination of
p(u1, u2,…,un-1, a) and p(u1, u2,…,un-1, b) .

Examples:!

p(u
1
,u
2
,...,u

n"1,c) =
(b " c)p(u

1
,u
2
,...,u

n"1,a) + (c " a)p(u
1
,u
2
,...,u

n"1,b)

b " a

!

p(0,u,1) = (1" u)p(0,0,1) + up(0,1,1)

p(0,u) =
(4 " u)p(0,2) + (u " 2)p(0,4)

2

p(1,2,3,u) =
(u

2
" u)p(2,1,3,u

1
) + (u " u

1
)p(3,2,1,u

2
)

u
2
" u

1

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 31

de Casteljau in polar form

p(0,0,0)

p(1,1,1)

p(0,1,1)

p(0,0,1)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 32

de Casteljau in polar form

p(0,0,0)

p(1,1,1)

p(0,1,1)

p(0,0,1)

p(0,0,u)
p(0,u,1)

p(u,1,1)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 33

de Casteljau in polar form

p(0,0,0)

p(1,1,1)

p(0,1,1)

p(0,0,1)

p(0,0,u)
p(0,u,1)

p(u,1,1)

p(0,u,u)
p(u,u,1)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 34

de Casteljau in polar form

p(0,0,0)

p(1,1,1)

p(0,1,1)

p(0,0,1)

p(0,0,u)
p(0,u,1)

p(u,1,1)

p(0,u,u)
p(u,u,1)•p(u,u,u)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 35

de Casteljau in polar form

p(0,0,0)

p(1,1,1)

p(0,1,1)

p(0,0,1)

p(0,0,u)
p(0,u,1)

p(u,1,1)

p(0,u,u)
p(u,u,1)•p(u,u,u)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 36

Composite curves in polar form
Suppose we want to glue two cubic Bézier curves together
in a way that automatically guarantees C2 continuity
everywhere. We can do this easily in polar form.
Start with parameter space for the pair of curves

1st curve [0,1], 2nd curve (1,2]

Make a knot vector: [000,1,222]
Number control points as before:

p(0,0,0), p(0,0,1), p(0,1,2), p(1,2,2), p(2,2,2)
Okay, 5 control points for the two curves, so 3 of them
must be shared since each curve needs 4. That’s what
having only 1 copy of knot 1 achieves, and that’s what
gives us C2 continuity at the join point at u = 1

u0 1
knot knot

u 2
knot

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 37

de Boor algorithm in polar form

p(0,0,0)

p(0,0,1)
p(0,1,2)

p(1,2,2)
p(2,2,2)

u = 0.5
Knot vector = [0,0,0,1,2,2,2]

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 38

Inserting a knot

p(0,0,0)

p(0,0,1)
p(0,1,2)

p(1,2,2)
p(2,2,2)

u = 0.5

p(0,0,0.5)

p(0,0.5,1)

p(0.5,1,2)

Knot vector = [0,0,0,0.5,1,2,2,2]

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 39

Inserting a 2nd knot

p(0,0,0)

p(0,0,1)
p(0,1,2)

p(1,2,2)
p(2,2,2)

u = 0.5

p(0,0,0.5)

p(0,0.5,1)

p(0.5,1,2)

p(0,0.5,0.5) p(0.5,0.5,1)

Knot vector = [0,0,0,0.5,0.5,1,2,2,2]

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 40

Inserting a 3rd knot to get a point

p(0,0,0)

p(0,0,1)
p(0,1,2)

p(1,2,2)
p(2,2,2)

u = 0.5

p(0,0,0.5)

p(0,0.5,1)

p(0.5,1,2)

p(0,0.5,0.5) p(0.5,0.5,1)

p(0.5,0.5,0.5)

Knot vector = [0,0,0,0.5,0.5,0.5,1,2,2,2]

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 41

Recovering the Bézier curves

p(0,0,0)

p(0,0,1)
p(0,1,2)

p(1,2,2)
p(2,2,2)

Knot vector = [0,0,0,1,1,2,2,2]

p(0,1,1)

p(1,1,2)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 42

Recovering the Bézier curves

p(0,0,0)

p(0,0,1)
p(0,1,2)

p(1,2,2)
p(2,2,2)

Knot vector = [0,0,0,1,1,1,2,2,2]

p(0,1,1)

p(1,1,2)

p(1,1,1)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 43

B-Splines
B-splines are a generalization of Bézier curves that allows grouping them
together with continuity across the joints
The B in B-splines stands for basis, they are based on a very general class of
spline basis functions
Splines is a term referring to composite parametric curves with guaranteed
continuity
The general form is similar to that of Bézier curves

Given m + 1 values ui in parameter space (these are called knots), a degree n B-spline
curve is given by:

where m ≥ i + n + 1

!

p(u) = N
i,n (u)pi

i= 0

m"n"1

#

N
i,0 (u) =

1 u
i
$ u < u

i+1

0 otherwise

%
&
'

N
i,n (u) =

u " u
i

u
i+n " ui

N
i,n"1(u) +

u
i+n+1 " u

u
i+n+1 " ui+1

N
i+1,n"1(u)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 44

Uniform periodic basis

Let N(u) be a global basis
function for our uniform
cubic B-splines
N(u) is piecewise cubic

p(u) = N(u) p3+ N(u+1) p2 + N(u+2) p1 + N(u+3)p0

0 4
u

N(u)

!

N(u) =

1

6
u

3

" 1

2
(u "1)

3
+ 1

2
(u "1)

2
+ 1

2
(u "1) + 1

6

1

2
(u " 2)

3 " (u " 2)
2

+ 2

3

" 1

6
(u " 3)

3
+ 1

2
(u " 3)

2 " 1

2
(u " 3) + 1

6

=

1

6
u

3
if u <1

" 1

2
u

3
+ 2u

2 " 2u + 2

3
if u < 2

1

2
u

3 " 4u
2

+10u " 22

3
if u < 3

" 1

6
u

3
+ 2u

2 " 8u + 32

3
otherwise

$

%
%

&

%
%

1 2 3 p0p1p2p3

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 45

Uniform periodic B-Spline

p0

p1

p2

p3
p(u) = (–1/6u3 + 1/2u2 – 1/2u + 1/6)p0 +

 (1/2u3
 – u2 + 2/3)p1 +

 (–1/2u3 + 1/2u2
 + 1/2u + 1/6)p2 +

 (1/6u3)p3

