Interpolating curves
Optional

Parametric curve review
Parametric curves

We use parametric curves, \(Q(u) = (x(u), y(u)) \), where \(x(u) \) and \(y(u) \) are cubic polynomials:

\[
\begin{align*}
x(u) &= Au^3 + Bu^2 + Cu + D \\
y(u) &= Eu^3 + Fu^2 + Gu + H
\end{align*}
\]

Advantages:

- easy (and efficient) to compute
- “well behaved”
- infinitely differentiable

We also assume that \(u \) varies from 0 to 1
Various ways to set A, B, C, D

\[x(u) = Au^3 + Bu^2 + Cu + D \]

0) Directly – non-intuitive; not very useful.
1) Set positions and derivatives of endpoints: “Hermite Curve”
2) Use “control points” that indirectly influence the curve:

“Beziers curve”:
- interpolates endpoints
- does not interpolate middle control points

“B-spline”
- does not interpolate ANY control points
Splines = join cubic curves

Considerations
What kind of continuity at join points ("knots")?

- \(C_0 \) = value
- \(C_1 \) = first derivative
- \(C_2 \) = second derivative

How do control points work?
Spline summary

- Joined Hermite curves:
 - C1 continuity
 - Interpolates control points
- B-splines:
 - C2 continuity
 - Does not interpolate control points

Can we get…
 - C2 continuity
 - Interpolates control points

That’s what we’ll talk about towards the end of this lecture.
But first, some other useful tips.
Useful tips for Bézier curves
Displaying Bézier curves

- How could we draw one of these things?

- It would be nice if we had an *adaptive* algorithm, that would take into account flatness.

```plaintext
DisplayBezier( V0, V1, V2, V3 )
begin
    if ( FlatEnough( V0, V1, V2, V3 ) )
        Line( V0, V3 );
    else
        something;
end;
```
DisplayBezier(V0, V1, V2, V3)
begin
 if (FlatEnough(V0, V1, V2, V3))
 Line(V0, V3);
 else
 Subdivide(V[]) ⇒ L[], R[]
 DisplayBezier(L0, L1, L2, L3);
 DisplayBezier(R0, R1, R2, R3);
end;
Testing for flatness

Compare total length of control polygon to length of line connecting endpoints:

\[
\frac{|V_0 - V_1| + |V_1 - V_2| + |V_2 - V_3|}{|V_0 - V_3|} < 1 + \varepsilon
\]
Tips for B-splines

B-spline:
- C2 continuity
- does not interpolate any ctrl points
Endpoints of B-splines

- We can see that B-splines don’t interpolate the control points.
- It would be nice if we could at least control the endpoints of the splines explicitly.
- There’s a trick to make the spline begin and end at control points by repeating them.
- In the example below, let’s force interpolation of the last endpoint: (use endpoint 3 times)
Tips for animator project
What if we want a closed curve, i.e., a loop?

With Catmull-Rom and B-spline curves, this is easy:
Join several Hermite curves:
- Make derivatives match
- You still have ability to pick what that matched derivative is.
Cardinal splines

- If we set each derivative to be some positive scalar multiple k of the vector between the previous and next controls, we get a Cardinal spline.
- This leads to:

$$p_i^{\prime\prime} = \tau(p_{i+1} - p_{i-1})$$
$$p_{i+1}^{\prime\prime} = \tau(p_{i+2} - p_i)$$

for any two consecutive interior points p_i and p_{i+1} (we can deal with the endpoints separately if need be)

- Think of τ as a parameter that controls the tension of the spline
Cardinal splines

\[p(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_i \\ p_{i+1} \\ p_i' \\ p_{i+1}' \end{bmatrix} \]

\[= \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_i \\ p_{i+1} \\ \tau(p_{i+1} - p_{i-1}) \\ \tau(p_{i+2} - p_i) \end{bmatrix} \]

\[= \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\tau & 0 & \tau & 0 \\ 0 & -\tau & 0 & \tau \end{bmatrix} \begin{bmatrix} p_i \\ p_{i+1} \\ p_i' \\ p_{i+2}' \end{bmatrix} \]

\[= \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \tau \begin{bmatrix} -1 & 2/\tau - 1 & -2/\tau + 1 & 1 \\ 2 & -3/\tau + 1 & 3/\tau - 2 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 1/\tau & 0 & 0 \end{bmatrix} \begin{bmatrix} p_i \\ p_{i-1} \\ p_i \\ p_{i+1} \end{bmatrix} \]
Catmull-Rom splines

- If we set $\tau = 1/2$, we get a **Catmull-Rom spline**.

- So:

$$
\mathbf{p}(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \tau
\begin{bmatrix}
-1 & \frac{2}{\tau} - 1 & -2/\tau + 1 & 1 \\
2 & -3/\tau + 1 & 3/\tau - 2 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 1/\tau & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{p}_{i-1} \\
\mathbf{p}_i \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2}
\end{bmatrix}

= \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \frac{1}{2}
\begin{bmatrix}
-1 & 3 & -3 & 1 \\
2 & -5 & 4 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{p}_{i-1} \\
\mathbf{p}_i \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2}
\end{bmatrix}

$$

for any two consecutive interior points \mathbf{p}_i and \mathbf{p}_{i+1} (again dealing with endpoints separately as needed)
Catmull-Rom blending functions
C\(^2\) interpolating splines

- How can we keep the C\(^2\) continuity we get with B-splines but get interpolation, too?
- Again start with connected cubic curves.
- Each cubic segment is an Hermite curve for which we get to set the position and derivative of the endpoints.
- That leaves us with a spline that’s C\(^0\) and C\(^1\) such as a Catmull-Rom or Cardinal spline.
- But interestingly, there are other ways to choose the values of the (shared) first derivatives at the join points.
- Is there a way to set those derivatives to get other useful properties?
Find second derivatives

So far, we have:

- \(C^0 \), \(C^1 \) continuity
- Derivatives are still free, as ‘\(D_0…D_4 \)’

Compute second derivatives at both sides of every join point:

For \(p_1 \):
\[
Q''_0(1) = 6p_0 - 6p_1 + 2D_0 + 4D_1 \\
Q''(0) = -6p_1 + 6p_2 - 4D_1 - 2D_2
\]

For \(p_2 \):
\[
Q''_1(1) = 6p_1 - 6p_2 + 2D_1 + 4D_2 \\
Q''(0) = -6p_2 + 6p_3 - 4D_2 - 2D_3
\]
Match the second derivatives

Now, symbolically set the second derivatives to be equal.

For p_1

$6p_0 - 6p_1 + 2D_0 + 4D_1 = -6p_1 + 6p_2 - 4D_1 - 2D_2$

$3(p_2 - p_0) = D_0 + 4D_1 + D_2$

For p_2

$6p_1 - 6p_2 + 2D_1 + 4D_2 = -6p_2 + 6p_3 - 4D_2 - 2D_3$

$3(p_3 - p_1) = D_1 + 4D_2 + D_3$
Not quite done yet

- How many equations is this? \(m-1 \)
- How many unknowns are we solving for? \(m+1 \)
- We have two additional degrees of freedom, which we can nail down by imposing more conditions on the curve.
- There are various ways to do this. We’ll use the variant called **natural \(C^2 \) interpolating splines**, which requires the second derivative to be zero at the endpoints.
- This condition gives us the two additional equations we need.
 - At the \(P_0 \) endpoint, it is: \(Q_0''(0) = 0 \)
 - At the \(P_m \) endpoint, we have: \(Q_{m-1}''(1) = 0 \)
Solving for the derivatives

Let’s collect our $m+1$ equations into a single linear system:

$$
\begin{bmatrix}
2 & 1 \\
1 & 4 & 1 \\
\vdots \\
1 & 4 & 1 \\
1 & 2
\end{bmatrix}
\begin{bmatrix}
D_0^T \\
D_1^T \\
D_2^T \\
\vdots \\
D_{m-1}^T \\
D_m^T
\end{bmatrix}
=
\begin{bmatrix}
3(p_1 - p_0)^T \\
3(p_2 - p_0)^T \\
3(p_3 - p_1)^T \\
\vdots \\
3(p_m - p_{m-2})^T \\
3(p_m - p_{m-1})^T
\end{bmatrix}
$$

It’s easier to solve than it looks.

See the notes from Bartels, Beatty, and Barsky for details.
Once we’ve solved for the real D_is, we can plug them in to find our Bézier or Hermite curves and draw the final spline:

Have we lost anything?

=> Yes, local control.
Next time: Subdivision curves

- Basic idea:
 Represent a curve as an iterative algorithm, rather than as an explicit function.

- Reading:
 [Course reader pp. 248-259 and pp. 273-274]