

Reading

■Optional
-Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987. (See course reader.)

Parametric curves

$■$ We use parametric curves, $Q(u)=(x(u), y(u))$, where $x(u)$ and $y(u)$ are cubic polynomials:

$$
\begin{aligned}
& x(u)=A u^{3}+B u^{2}+C u+D \\
& y(u)=E u^{3}+F u^{2}+G u+H
\end{aligned}
$$

- Advantages:

\square easy (and efficient) to compute
■ "well behaved"
■ infinitely differentiable
- We also assume that u varies from 0 to 1

Various ways to set A,B,C,D

$$
x(u)=A u^{3}+B u^{2}+C u+D
$$

$0)$ Directly - non-intuitive; not very useful.

1) Set positions and derivatives of endpoints:
"Hermite Curve"
2) Use "control points" that indirectly influence the curve:

"Bezier curve":

- interpolates endpoints
- does not interpolate middle control points
"B-spline"
- does not interpolate ANY control points

Splines $=$ join cubic curves

Considerations
What kind of continuity at join points ("knots")?

$$
\begin{aligned}
& \mathrm{C} 0=\text { value } \\
& \mathrm{C} 1=\text { first derivative } \\
& \mathrm{C} 2=\text { second derivative }
\end{aligned}
$$

How do control points work?

Spline summary

- Joined Hermite curves:

C1 continuity
Interpolates control points

- B-splines:

C2 continuity
Does not interpolate control points
Can we get...
C2 continuity
Interpolates control points

That's what we'll talk about towards the end of this lecture.
But first, some other useful tips.

Displaying Bézier curves

■ How could we draw one of these things?

■ It would be nice if we had an adaptive algorithm, that would take into account flatness.

```
DisplayBezier( V0, V1, V2, V3 )
begin
    if ( FlatEnough( V0, V1, V2, V3 ) )
        Line( V0, V3 );
    else
        something;
end;
```


Subdivide and conquer

DisplayBezier(V0, V1, V2, V3)
begin
if (FlatEnough(V0, V1, V2, V3))
Line(V0, V3);
else
Subdivide (V[]) \Rightarrow L[], R[]
DisplayBezier(L0, L1, L2, L3); DisplayBezier(R0, R1, R2, R3);

end;

Testing for flatness

Compare total length of control polygon to length of line connecting endpoints:

$$
\frac{\left|V_{0}-V_{1}\right|+\left|V_{1}-V_{2}\right|+\left|V_{2}-V_{3}\right|}{\left|V_{0}-V_{3}\right|}<1+\varepsilon
$$

Tips for B-splines

B-spline:

- C2 continuity
- does not interpolate any ctrl points

Endpoints of B-splines

■ We can see that B-splines don't interpolate the control points.

- It would be nice if we could at least control the endpoints of the splines explicitly.
- There's a trick to make the spline begin and end at control points by repeating them.
- In the example below, let's force interpolation of the last endpoint: (use endpoint 3 times)

Closing the loop

■ What if we want a closed curve, i.e., a loop?
■ With Catmull-Rom and B-spline curves, this is easy:

Simple interpolating splines

■ Join several Hermite curves:

- Make derivatives match
- You still have ability to pick what that matched derivative is.

Cardinal splines

- If we set each derivative to be some positive scalar multiple k of the vector between the previous and next controls, we get a Cardinal spline.
- This leads to:

$$
\begin{aligned}
\mathbf{p}_{i}^{u} & =\tau\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right) \\
\mathbf{p}_{i+1}^{u} & =\tau\left(\mathbf{p}_{i+2}-\mathbf{p}_{i}\right)
\end{aligned}
$$

for any two consecutive interior points \mathbf{p}_{i} and \mathbf{p}_{i+1} (we can deal with the endpoints separately if need be)

- Think of τ as a parameter that controls the tension of the spline

Cardinal splines

$$
\begin{aligned}
& \mathbf{p}(u)=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i}^{u} \\
\mathbf{p}_{i+1}^{u}
\end{array}\right] \\
& =\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\tau\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right) \\
\tau\left(\mathbf{p}_{i+2}-\mathbf{p}_{i}\right)
\end{array}\right] \\
& =\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\tau & 0 & \tau & 0 \\
0 & -\tau & 0 & \tau
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i-1} \\
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2}
\end{array}\right] \\
& =\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] \tau\left[\begin{array}{cccc}
-1 & 2 / \tau-1 & -2 / \tau+1 & 1 \\
2 & -3 / \tau+1 & 3 / \tau-2 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 1 / \tau & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i-1} \\
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2}
\end{array}\right]
\end{aligned}
$$

Catmull-Rom splines

- If we set $\tau=1 / 2$, we get a Catmull-Rom spline.
- So:

$$
\mathbf{p}(u)=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] \tau\left[\begin{array}{cccc}
-1 & 2 / \tau-1 & -2 / \tau+1 & 1 \\
2 & -3 / \tau+1 & 3 / \tau-2 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 1 / \tau & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i-1} \\
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2}
\end{array}\right]=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] \frac{1}{2}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
2 & -5 & 4 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i-1} \\
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2}
\end{array}\right]
$$

for any two consecutive interior points \mathbf{p}_{i} and \mathbf{p}_{i+1} (again dealing with endpoints separately as needed)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell

Catmull-Rom blending functions

C^{2} interpolating splines

■ How can we keep the C^{2} continuity we get with B -splines but get interpolation, too?

- Again start with connected cubic curves.

■ Each cubic segment is an Hermite curve for which we get to set the position and derivative of the endpoints.
■ That leaves us with a spline that's C^{0} and C^{1} such as a Catmull-Rom or Cardinal spline.

- But interestingly, there are other ways to choose the values of the (shared) first derivatives at the join points.
■ Is there a way to set those derivatives to get other useful properties?

Find second derivatives

So far, we have:
$\mathrm{C}^{0}, \mathrm{C}^{1}$ continuity
Derivatives are still free, as ' $\mathrm{D}_{0} \ldots \mathrm{D}_{4}$ '
Compute second derivatives at both sides of every join point:

For $\mathbf{p}_{1}: \quad Q_{0}^{\prime \prime}(1)=6 \mathbf{p}_{0}-6 \mathbf{p}_{1}+2 \mathbf{D}_{0}+4 \mathbf{D}_{1} \quad Q_{1}^{\prime \prime}(0)=-6 \mathbf{p}_{1}+6 \mathbf{p}_{2}-4 \mathbf{D}_{1}-2 \mathbf{D}_{2}$
For $\mathbf{p}_{2}: \quad Q_{1}^{\prime \prime}(1)=6 \mathbf{p}_{1}-6 \mathbf{p}_{2}+2 \mathbf{D}_{1}+4 \mathbf{D}_{2} \quad Q_{2}^{\prime \prime}(0)=-6 \mathbf{p}_{2}+6 \mathbf{p}_{3}-4 \mathbf{D}_{2}-2 \mathbf{D}_{3}$

Match the second derivatives

Now, symbolically set the second derivatives to be equal.
For \mathbf{p}_{1}

$$
\begin{aligned}
& 6 \mathbf{p}_{0}-6 \mathbf{p}_{1}+2 \mathbf{D}_{0}+4 \mathbf{D}_{1}=-6 \mathbf{p}_{1}+6 \mathbf{p}_{2}-4 \mathbf{D}_{1}-2 \mathbf{D}_{2} \\
& 3\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right)=\mathbf{D}_{0}+4 \mathbf{D}_{1}+\mathbf{D}_{2}
\end{aligned}
$$

For \mathbf{p}_{2}

$$
\begin{aligned}
& 6 \mathbf{p}_{1}-6 \mathbf{p}_{2}+2 \mathbf{D}_{1}+4 \mathbf{D}_{2}=-6 \mathbf{p}_{2}+6 \mathbf{p}_{3}-4 \mathbf{D}_{2}-2 \mathbf{D}_{3} \\
& 3\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)=\mathbf{D}_{1}+4 \mathbf{D}_{2}+\mathbf{D}_{3}
\end{aligned}
$$

Not quite done yet

- How many equations is this? $m-1$

■ How many unknowns are we solving for? $m+1$

- We have two additional degrees of freedom, which we can nail down by imposing more conditions on the curve.
- There are various ways to do this. We'll use the variant called natural \boldsymbol{C}^{2} interpolating splines, which requires the second derivative to be zero at the endpoints.
- This condition gives us the two additional equations we need.
- At the P_{0} endpoint, it is: $Q_{0}^{\prime \prime}(0)=0$
- At the P_{m} endpoint, we have: $Q_{m-1}^{\prime \prime}(1)=0$

Solving for the derivatives

■ Let's collect our $m+1$ equations into a single linear system:

$$
\left[\begin{array}{cccccc}
2 & 1 & & & & \\
1 & 4 & 1 & & & \\
& 1 & 4 & 1 & & \\
& & & \ddots & & \\
& & & 1 & 4 & 1 \\
& & & & 1 & 2
\end{array}\right]\left[\begin{array}{c}
\mathbf{D}_{0}^{T} \\
\mathbf{D}_{1}^{T} \\
\mathbf{D}_{2}^{T} \\
\vdots \\
\mathbf{D}_{m-1}^{T} \\
\mathbf{D}_{m}^{T}
\end{array}\right]=\left[\begin{array}{c}
3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)^{T} \\
3\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right)^{T} \\
3\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)^{T} \\
\vdots \\
3\left(\mathbf{p}_{m}-\mathbf{p}_{m-2}\right)^{T} \\
3\left(\mathbf{p}_{m}-\mathbf{p}_{m-1}\right)^{T}
\end{array}\right]
$$

■ It's easier to solve than it looks.
\square See the notes from Bartels, Beatty, and Barsky for details.

C^{2} interpolating spline

Once we've solved for the real \mathbf{D}_{i} s, we can plug them in to find our Bézier or Hermite curves and draw the final spline:

Have we lost anything?
=> Yes, local control.

Next time: Subdivision curves

\square Basic idea:
Represent a curve as an iterative algorithm, rather than as an explicit function.
\square Reading:

- Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, A.5.
[Course reader pp. 248-259 and pp. 273-274]

