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Subdivision curves
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Reading

Recommended:
Stollnitz, DeRose, and Salesin.  Wavelets for
Computer Graphics:  Theory and Applications,
1996, section 6.1-6.3, A.5.

Note: there is an error in Stollnitz, et al.,
section A.5.  Equation A.3 should read:

MV = VΛ
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Subdivision curves
Idea:

repeatedly refine the control polygon

curve is the limit of an infinite process
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Chaikin’s algorithm
Chaikin introduced the following “corner-cutting” scheme
in 1974:

Start with a piecewise linear curve
Insert new vertices at the midpoints (the splitting step)
Average each vertex with the “next” (clockwise) neighbor (the
averaging step)
Go to the splitting step
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Averaging masks
The limit curve is a quadratic B-spline!
Instead of averaging with the nearest
neighbor, we can generalize by applying an
averaging mask during the averaging step:

In the case of Chaikin’s algorithm:
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Can we generate other B-splines?
Answer: Yes   Lane-Riesenfeld algorithm (1980)
Use averaging masks from Pascal’s triangle:

Gives B-splines of degree n+1.
n=0: 1

n=1: 1
                            1     1

n=2: 1
         1    1

                         1    2     1
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Subdivide ad nauseum?

After each split-average step, we are closer
to the limit curve.
How many steps until we reach the final
(limit) position?
Can we push a vertex to its limit position
without infinite subdivision?  Yes!
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One subdivision step

Consider the cubic B-spline subdivision
mask:

Now consider what happens during splitting
and averaging:
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Math for one subdivision step
Subdivision mask:

One subdivision step:

Split: 1
( )
2

= +a A B

1
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= +c B C

A C

B

a c
A C

B
split average
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a cb

Average:
   a and c do not change
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Consolidated math for one step
Subdivision mask:

One subdivision step:

Consolidated math for one subdivision step:
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Local subdivision matrix, cont’d
Tracking the point’s value through subdivision:

The limit position of the point is then:

or as we’d say in calculus…

OK, so how do we apply a matrix an infinite
number of times??
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Eigenvectors and eigenvalues
To solve this problem, we need to look at the eigenvectors
and eigenvalues of S.  First, a review…

Let v be a vector such that Sv = λv
We say that v is an eigenvector with eigenvalue λ.
An n x n matrix can have n eigenvalues and eigenvectors:

If the eigenvectors are linearly independent (which means that S is
non-defective), then they form a basis, and we can re-write P in
terms of the eigenvectors:
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To infinity, but not beyond…
So, applying S to P:

Applying it j times:

Let’s assume the eigenvalues are non-negative and sorted
so that:

Now let j go to infinity:

If λ1 > 1, then:
If λ1 < 1, then:
If λ1 = 1, then:
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Evaluation masks
What are the eigenvalues and eigenvectors of our cubic
B-spline subdivision matrix?

We’re OK!
But what is the final position?

Almost done… from earlier we know that we
can find ‘ai’, we but didn’t give specifics.
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Evaluation masks, cont’d
To finish up, we need to compute a1.
Remember:

Rewrite as:

We need to solve for the vector ‘A’.
(This is really just a change of basis
for representing the vector P).
The solution is:

Now we can compute the limit position:
We call u1 the evaluation mask.
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Evaluation masks, cont’d

Note that we need not start with the 0th level control points
and push them to the limit.
If we subdivide and average the control polygon j times,
we can push the vertices of the refined polygon to the limit
as well:

So far we’ve been looking at math for a subdivision
function f(x).
For a 2D parametric subdivision curve, (x(u), y(u)),
just apply these formulas separately for the x(u) and y(u)
functions.
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Recipe for subdivision curves

The evaluation mask for the cubic B-spline is:

Now we can cook up a simple procedure for
creating subdivision curves:

Subdivide (split+average) the control polygon a few
times.  Use the averaging mask.
Push the resulting points to the limit positions.  Use the
evaluation mask.
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Derivative of subdiv. function
What is the tangent to the cubic B-spline function?
Consider the formula for P again:

Where:

Derivative is just:

1 1 1 2 2 2 3 3 3

j j j

j
P a v a v a v! ! != + +

j

left

P center

right

! "
# $

= # $
# $% &

1 2 3

1 1 2
1 1

(1) 1 ( ) 0 ( ) 1
2 4

1 1 2

j j j

j
P a a a

!" # " # " #
$ % $ % $ %

= + + !$ % $ % $ %
$ % $ % $ %
& ' & ' & '

2 2 2 0

1 0 1
' lim

12

2

j

T

j

j
P a a u P

!"

# $
% &+# $

= = =% &% &
' (% &

' (
! 

" P = lim
#x$0

center % left

#x
= lim

j$&

center % left

1

2
j



University of Texas at Austin    CS384G  -   Computer Graphics     Spring 2010   Don Fussell                 19

Tangent analysis for 2D curve
What is the tangent to a parametric cubic B-spline
2D curve?
Using a similar derivation to what we just did for
a 1D function (but omitting details):

Thus, we can compute the tangent using the
second left eigenvector!  This analysis holds for
general subdivision curves and gives us the
tangent mask.
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Approximation vs. Interpolation of Control Points

Previous subdivision scheme approximated control points.  Can we
interpolate them?
Yes: DLG interpolating scheme (1987)
Slight modification to subdivision algorithm:

splitting step introduces midpoints
averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:

Since we are only changing the midpoints, the points after the
averaging step do not move.
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