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Parametric surfaces
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Reading

Required:
Watt, 2.1.4, 3.4-3.5.

Optional
Watt, 3.6.
Bartels, Beatty, and Barsky.  An Introduction to
Splines for use in Computer Graphics and
Geometric Modeling, 1987.
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Mathematical surface representations

 Explicit   z = f(x,y)  (a.k.a., a “height field”)
• what if the curve isn’t a function, like a sphere?

 Implicit   g(x,y,z) = 0

 Parametric   S(u,v) = (x(u,v), y(u,v), z(u,v))
• For the sphere:
       x(u,v) = r cos 2πv sin πu
       y(u,v) = r sin 2πv sin πu
       z(u,v) = r cos πu

As with curves, we’ll focus on parametric surfaces.
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Surfaces of revolution

Idea:  rotate a 2D profile curve around an axis.
What kinds of shapes can you model this way?
Find:  A surface S(u,v) which is radius(z) rotated about the
z axis.
Solution:

! 

x = radius(u)cos(v)

y = radius(u)sin(v)

z = u

! 

u" [z
min
,z
max
], v " [0,2# ]
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Extruded surfaces
Given:  A curve C(u) in the xy-plane:

Find:  A surface S(u,v) which is C(u) extruded along the z
axis.
Solution: ! 

C(u) =

cx (u)

cy (u)

0
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! 

x = cx (u)

y = cy (u)

z = v

! 

u" [u
min
,u
max
], v " [z

min
,z
max
]
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General sweep surfaces
The surface of revolution is a special case of a swept
surface.
Idea:  Trace out surface S(u,v) by moving a profile curve
C(u) along a trajectory curve T(v).

More specifically:
Suppose that C(u) lies in an (xc,yc) coordinate system with origin
Oc.
For every point along T(v), lay C(u) so that Oc coincides with T(v).
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The big issue:
How to orient C(u) as it moves along T(v)?

Here are two options:
1.  Fixed (or static):  Just translate Oc along T(v).

2.  Moving.  Use the Frenet frame of T(v).
Allows smoothly varying orientation.
Permits surfaces of revolution, for example.

Orientation
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Frenet frames
Motivation:  Given a curve T(v), we want to attach a smoothly varying
coordinate system.

To get a 3D coordinate system, we need 3 independent direction
vectors.

As we move along T(v), the Frenet frame (t,b,n) varies smoothly.

! 

t(v) = normalize[ " T (v)]

b(v) = normalize[ " T (v) # " " T (v)]

n(v) = b(v) # t(v)
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Frenet swept surfaces
Orient the profile curve C(u) using the Frenet frame of the trajectory T(v):

Put C(u) in the normal plane .
Place Oc on T(v).
Align xc for C(u) with b.
Align yc for C(u) with -n.

If T(v) is a circle, you get a surface of revolution exactly!
What happens at inflection points, i.e., where curvature goes to zero?
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Variations
Several variations are possible:

Scale C(u) as it moves, possibly using length of T(v) as
a scale factor.
Morph C(u) into some other curve         as it moves
along T(v).
…

! 

C (u)
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Generalizing from Parametric Curves

Flashback to curves:
We directly defined parametric function
f(u), as a cubic polynomial.

Why a cubic polynomial?
- minimum degree for C2 continuity
- “well behaved”

Can we do something similar for surfaces?
Initially, just think of a height field:  height = f(u,v).
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Cubic patches
Cubics curves are good… Let’s extend them in
the obvious way to surfaces:

16 terms in this function.

Let’s allow the user to pick the coefficient
for each of them:

2 3( ) 1f u u u u= + + +

2 3( ) 1g v v v v= + + +

2 2 2 2 3 3( ) ( ) 1 ...f u g v u v uv u v uv vu u v= + + + + + + + + +

3 3

0 1 2 15( ) ( ) ...f u g v c c u c v c u v= + + + +
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Interesting properties

What happens if I pick a particular ‘u’?

What happens if I pick a particular ‘v’?

What do these look like graphically on a patch?

3 3

0 1 2 15( , ) ...f u v c c u c v c u v= + + + +

( , )f u v =

( , )f u v =
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Use control points
As before, directly manipulating coefficients is not
intuitive.

Instead, directly manipulate control points.
These control points indirectly set the
coefficients, using approaches like those
we used for curves.
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Tensor product Bézier surface
Let’s walk through the steps:

Which control points are interpolated by the surface?
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Matrix form of Bézier surfaces
Recall that Bézier curves can be written in terms of the Bernstein
polynomials:

They can also be written in a matrix form:

Tensor product surfaces can be written out similarly:

! 

p(u) = B
i,n
(u) p

i

i= 0

n

"

! 

p(u) = u
3

u
2

u 1[ ]

"1 3 "3 1

3 "6 3 0

"3 3 0 0

1 0 0 0
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% 
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( 
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=UMBP

! 

p(u) = Bi,n (u)B j ,n (v)
j= 0

n

" pi, j
i= 0

n

"

=UM
B
P
s
M

B

TVT
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Tensor product B-spline surfaces
As with spline curves, we can piece together a sequence of Bézier
surfaces to make a spline surface.  If we enforce C2 continuity and
local control, we get B-spline curves:

treat rows of B as control points to generate Bézier control points in u.
treat Bézier control points in u as B-spline control points in v.
treat B-spline control points in v to generate Bézier control points in u.
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Which B-spline control points are interpolated by the surface?

Tensor product B-spline surfaces
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Continuity for surfaces
Continuity is more complex for surfaces than curves.  Must

examine partial derivatives at patch boundaries.

G1 continuity refers to tangent plane.
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Trimmed NURBS surfaces
Uniform B-spline surfaces are a special case of NURBS surfaces.
Sometimes, we want to have control over which parts of a NURBS
surface get drawn.
For example:

We can do this by trimming the u-v domain.
Define a closed curve in the u-v domain (a trim curve)
Do not draw the surface points inside of this curve.

It’s really hard to maintain continuity in these regions, especially while
animating.
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Next class: Subdivision surfaces

Topic:
How do we extend ideas from subdivision
curves to the problem of representing
surfaces?

Recommended Reading:

  • Stollnitz, DeRose, and Salesin. Wavelets for
    Computer Graphics: Theory and Applications,
    1996, section 10.2.
     [Course reader pp. 262-268]


