
University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell

Projections and Z-buffers

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 2

Reading
Required:

Watt, Section 5.2.2 – 5.2.4, 6.3, 6.6 (esp. intro and
subsections 1, 4, and 8–10),

Further reading:
Foley, et al, Chapter 5.6 and Chapter 6
David F. Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2nd Ed., McGraw-
Hill, New York, 1990, Chapter 2.
I. E. Sutherland, R. F. Sproull, and R. A. Schumacker,
A characterization of ten hidden surface algorithms,
ACM Computing Surveys 6(1): 1-55, March 1974.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 3

3D Geometry Pipeline
Before being turned into pixels by graphics hardware, a piece of
geometry goes through a number of transformations...

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 4

Projections transform points in n-space to m-space, where m<n.
In 3-D, we map points from 3-space to the projection plane (PP)
along projectors emanating from the center of projection (COP):

The center of projection is exactly the same as the pinhole in a pinhole
camera.
There are two basic types of projections:

Perspective – distance from COP to PP finite
Parallel – distance from COP to PP infinite

Projections

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 5

Parallel projections
For parallel projections, we specify a direction of
projection (DOP) instead of a COP.
There are two types of parallel projections:

Orthographic projection – DOP perpendicular to PP
Oblique projection – DOP not perpendicular to PP

We can write orthographic projection onto the z =0 plane
with a simple matrix.

But normally, we do not drop the z value right away. Why
not?

!

" x

" y

1

$

%
%
%

&

'

(
(
(

=

1 0 0 0

0 1 0 0

0 0 0 1

$

%
%
%

&

'

(
(
(

x

y

z

1

$

%
%
%
%

&

'

(
(
(
(

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 6

Properties of parallel projection

Properties of parallel projection:
Not realistic looking
Good for exact measurements
Are actually a kind of affine transformation

Parallel lines remain parallel
Angles not (in general) preserved

Most often used in CAD, architectural
drawings, etc., where taking exact measurement
is important

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 7

Derivation of perspective projection
Consider the projection of a point onto the projection plane:

By similar triangles, we can compute how much the x and y
coordinates are scaled:

[Note: Watt uses a left-handed coordinate system, and he looks down
the +z axis, so his PP is at +d.]

!

" x = #
d

z
x " y = #

d

z
y

!

" x

x
= #

d

z

" y

y
= #

d

z

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 8

Homogeneous coordinates revisited
Remember how we said that affine transformations work
with the last coordinate always set to one.
What happens if the coordinate is not one?
We divide all the coordinates by W:

If W = 1, then nothing changes.
Sometimes we call this division step the “perspective
divide.”

!

X /W

Y /W

Z /W

W /W

"

$
$
$
$

%

&

'
'
'
'

(

x

y

z

1

"

$
$
$
$

%

&

'
'
'
'

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 9

Homogeneous coordinates and perspective projection

Now we can re-write the perspective projection as a matrix equation:

After division by W, we get:

Again, projection implies dropping the z coordinate to give a 2D
image, but we usually keep it around a little while longer.

!

X

Y

W

"

$
$
$

%

&

'
'
'

=

1 0 0 0

0 1 0 0

0 0 (1/d 0

"

$
$
$

%

&

'
'
'

x

y

z

1

"

$
$
$
$

%

&

'
'
'
'

=

x

y

(z /d

"

$
$
$

%

&

'
'
'

!

" x

" y

1

$

%
%
%

&

'

(
(
(

=

)
x

z
d

)
y

z
d

1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 10

Projective normalization
After applying the perspective transformation and
dividing by w, we are free to do a simple parallel
projection to get the 2D image.
What does this imply about the shape of things
after the perspective transformation + divide?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 11

Vanishing points
What happens to two parallel lines that are not parallel to the
projection plane?
Think of train tracks receding into the horizon...

The equation for a line is:

After perspective transformation we get:

!

l = p+ tv =

px

py

pz

1

"

$
$
$
$

%

&

'
'
'
'

+ t

vx

vy

vz

0

"

$
$
$
$

%

&

'
'
'
'

!

X

Y

W

"

$
$
$

%

&

'
'
'

=

px + tvx

py + tvy

((pz + tvz) /d

"

$
$
$

%

&

'
'
'

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 12

Vanishing points (cont'd)
Dividing by W:

Letting t go to infinity:

We get a point that depends only on v
What happens to the line ?
Each set of parallel lines intersect at a vanishing point on
the PP.
Q: How many vanishing points are there?

!

" x

" y

1

$

%
%
%

&

'

(
(
(

=

)
px + tvx

pz + tvz

d

)
py + tvy

pz + tvz

d

)(pz + tvz)/d

)(pz + tvz)/d

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

!

"
vx

vz

"
vy

vz
1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

!

l = q+ tv

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 13

Properties of perspective projections
The perspective projection is an example of a projective
transformation.

Here are some properties of projective transformations:
Lines map to lines
Parallel lines do not necessarily remain parallel
Ratios are not preserved

One of the advantages of perspective projection is that size varies
inversely with distance – looks realistic.
A disadvantage is that we can't judge distances as exactly as we can
with parallel projections.
Q: Why did nature give us eyes that perform perspective
projections?
Q: Do our eyes “see in 3D”?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 14

Z-buffer
We can use projections for hidden surface elimination.
The Z-buffer' or depth buffer algorithm [Catmull, 1974] is probably the
simplest and most widely used of these techniques.
Here is pseudocode for the Z-buffer hidden surface algorithm:

for each pixel (i,j) do
Z-buffer [i,j] ← FAR
Framebuffer[i,j] ← <background color>

end for
for each polygon A do

for each pixel in A do
Compute depth z and shade s of A at (i,j)
if z > Z-buffer [i,j] then

Z-buffer [i,j] ← z
Framebuffer[i,j] ← s

end if
end for

end for

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 15

Z-buffer, cont'd
The process of filling in the pixels inside of a polygon is called
rasterization.
During rasterization, the z value and shade s can be computed
incrementally (fast!).

Curious fact:

 Described as the “brute-force image space algorithm” by [SSS]
 Mentioned only in Appendix B of [SSS] as a point of comparison

for huge memories, but written off as totally impractical.

Today, Z-buffers are commonly implemented in hardware.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 16

Ray tracing vs. Z-Buffer
Ray tracing:

for each ray {
 for each object {
 test for intersection
 }
 }

Z-Buffer:
for each object {
project_onto_screen;
 for each ray {
 test for intersection

 }
 }

In both cases, optimizations are applied to the inner loop.

Biggest differences:
- ray order vs. object order
- Z-buffer does some work in screen space
- Z-buffer restricted to rays from a single

 center of projection!

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 17

Gouraud vs. Phong interpolation

Does Z-buffer graphics hardware do a full shading
calculation at every point? Not in the past, but
this has changed!
Smooth surfaces are often approximated by
polygonal facets, because:

Graphics hardware generally wants polygons (esp.
triangles).
Sometimes it easier to write ray-surface intersection
algorithms for polygonal models.

How do we compute the shading for such a
surface?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 18

Faceted shading
Assume each face has a constant normal:

For a distant viewer and a distant light source,
how will the color of each triangle vary?
Result: faceted, not smooth, appearance.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 19

Gouraud interpolation
To get a smoother result that is easily performed in hardware, we can
do Gouraud interpolation.
Here’s how it works:
 Compute normals at the vertices.
 Shade only the vertices.
 Interpolate the resulting vertex colors.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 20

Gouraud interpolation, cont'd
Gouraud interpolation has significant limitations.
If the polygonal approximation is too coarse, we can miss specular highlights.

We will encounter Mach banding (derivative discontinuity enhanced by human eye).

 Alas, this is usually what graphics hardware supported until very recently.
 But new graphics hardware supports…

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 21

Phong interpolation
To get an even smoother result with fewer artifacts, we can perform
Phong interpolation.
Here’s how it works:
1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 22

Gouraud vs. Phong interpolation

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 23

Texture mapping and the z-buffer
Texture-mapping can also be handled in z-buffer algorithms.
Method:

Scan conversion is done in screen space, as usual
Each pixel is colored according to the texture
Texture coordinates are found by Gouraud-style interpolation

Note: Mapping is more complicated if you want to do perspective
right!

- linear in world space != linear in screen space

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 24

Antialiasing textures
If you render an object with a texture map using point-sampling, you
can get aliasing:

From Crow, SIGGRAPH '84
Proper antialiasing requires area averaging over pixels:

From Crow, SIGGRAPH '84
In some cases, you can average directly over the texture pixels to do
the anti-aliasing.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 25

Computing the average color
The computationally difficult part is summing over the
covered pixels.
Several methods have been used.
The simplest is brute force:

Figure out which texels are covered and add up their colors to
compute the average.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 26

Mipmaps
A faster method is mip maps developed by Lance Williams in 1983:

Stands for “multum in parvo” – many things in a small place
Keep textures prefiltered at multiple resolutions
Has become the graphics hardware standard

magnify

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 27

Mipmap pyramid

The mip map hierarchy can be thought of as an image pyramid:
Level 0 (T0[i,j]) is the original image.
Level 1 (T1[i,j]) averages over 2x2 neighborhoods of original.
Level 2 (T2[i,j]) averages over 4x4 neighborhoods of original
Level 3 (T3[i,j]) averages over 8x8 neighborhoods of original

What’s a fast way to pre-compute the texture map for each level?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 28

Mipmap resampling

What would the mipmap return for an average over a 5 x 5
neighborhood at location (u0,v0)?

How do we measure the fractional distance between levels?

What if you need to average over a non-square region?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 29

Summed area tables
A more accurate method than mipmaps is summed area
tables invented by Frank Crow in 1984.
Recall from calculus:

In discrete form:

Q: If we wanted to do this real fast, what might we pre-
compute?

!

f (x)dx = f (x)dx " f (x)dx
"#

a

$
"#

b

$
a

b

$

!

f [i] = f [i]"
i= 0

m

#
i= k

m

f [i]
i= 0

k

#

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 30

Summed area tables (cont’d)
We can extend this idea to 2D by creating a table, S[i,j], that contains
the sum of everything below and to the left.

Q: How do we compute the average over a region from (l, b) to (r, t)?
Characteristics:
Requires more memory and precision
Gives less blurry textures

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 31

Comparison of techniques

Point sampled

 MIP-mapped

Summed area table

From Crow, SIGGRAPH '84

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 32

Cost of Z-buffering
Z-buffering is the algorithm of choice for hardware
rendering (today), so let’s think about how to make it run
as fast as possible…
The steps involved in the Z-buffer algorithm are:

1. Send a triangle to the graphics hardware.
2. Transform the vertices of the triangle using the modeling matrix.
3. Transform the vertices using the projection matrix.
4. Set up for incremental rasterization calculations
5. Rasterize

(generate “fragments” = potential pixels)
6. Shade at each fragment
7. Update the framebuffer according to z.

What is the overall cost of Z-buffering?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 33

Cost of Z-buffering, cont’d
We can approximate the cost of this method as:

where:
kbus = bus cost to send a vertex
vbus = number of vertices sent over the bus
kxform = cost of transforming a vertex
vxform = number of vertices transformed
ksetup = cost of setting up for rasterization
t = number of triangles being rasterized
kshade = cost of shading a fragment
d = depth complexity

 (average times a pixel is covered)
m2 = number of pixels in frame buffer

2()bus bus xform xform setup shadek v k v k t k dm+ + +

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 34

Visibility tricks for Z-buffers
Given this cost function:

what can we do to accelerate Z-buffering?

Accel method vbus vxform t d m

2()bus bus xform xform setup shadek v k v k t k dm+ + +

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 35

Next class: Visual Perception
Topic:

How does the human visual system?
How do humans perceive color?
How do we represent color in computations?

Read:
 • Glassner, Principles of Digital Image Synthesis,
 pp. 5-32. [Course reader pp.1-28]
 • Watt , Chapter 15.
 • Brian Wandell. Foundations of Vision. Sinauer
 Associates, Sunderland, MA, pp. 45-50 and
 69-97, 1995.
 [Course reader pp. 29-34 and pp. 35-63]

