# Image processing



# Jain, Kasturi, Schunck, *Machine Vision*. McGraw-Hill, 1995. Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4.



## Image processing

- An image processing operation typically defines a new image g in terms of an existing image f.
- The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written:

g(x,y) = t(f(x,y))

- Examples: threshold, RGB  $\rightarrow$  grayscale
- Note: a typical choice for mapping to grayscale is to apply the YIQ television matrix and keep the Y.

| Y |   | 0.299 | 0.587                            | 0.114  | $[\mathbf{R}]$ |
|---|---|-------|----------------------------------|--------|----------------|
| Ι | = | 0.596 | <b>0.587</b><br>-0.275<br>-0.523 | -0.321 | G              |
| Q |   | 0.212 | -0.523                           | 0.311  | B              |



#### Pixel movement

Some operations preserve intensities, but move pixels around in the image

$$g(x, y) = f(\tilde{x}(x, y), \tilde{y}(x, y))$$

Examples: many amusing warps of images

#### [Show image sequence.]



Image processing is also useful for noise reduction and edge enhancement. We will focus on these applications for the remainder of the lecture...

#### Common types of noise:

Salt and pepper noise: contains random occurrences of black and white pixels

**Impulse noise:** contains random occurrences of white pixels

Gaussian noise: variations in intensity drawn from a Gaussian normal distribution





Original

Salt and pepper noise





Impulse noise

Gaussian noise



## Ideal noise reduction









## Ideal noise reduction





## Practical noise reduction

How can we "smooth" away noise in a single image?

Is there a more abstract way to represent this sort of operation? Of course there is!



## Discrete convolution

For a digital signal, we define **discrete convolution** as:

$$g[i] = f[i] * h[i]$$
  
=  $\sum_{i'} f[i']h[i - i']$   
=  $\sum_{i'} f[i']\hat{h}[i' - i]$ 

where

$$\widehat{h}[i] = h[-i]$$



## Discrete convolution in 2D

Similarly, discrete convolution in 2D becomes:

$$g[i,j] = f[i,j] * h[i,j]$$
  
=  $\sum_{i'} \sum_{j'} f[i',j']h[i-i',j-j']$   
=  $\sum_{i'} \sum_{j'} f[i',j']\hat{h}[i'-i,j'-j]$ 

where 
$$h[i,j] = h[-i,-j]$$



## Convolution representation

Since f and h are defined over finite regions, we can write them out in two-dimensional arrays:

| 79  | 23                                | 119                                          | 120                                    | 105                                                   | 4                                                                 | 0                                                                         |
|-----|-----------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|
| 10  | 9                                 | 62                                           | 12                                     | 78                                                    | 34                                                                | 0                                                                         |
| 58  | 197                               | 46                                           | 46                                     | 0                                                     | 0                                                                 | 48                                                                        |
| 135 | 5                                 | 188                                          | 191                                    | 68                                                    | 0                                                                 | 49                                                                        |
| 1   | 1                                 | 29                                           | 26                                     | 37                                                    | 0                                                                 | 77                                                                        |
| 89  | 144                               | 147                                          | 187                                    | 102                                                   | 62                                                                | 208                                                                       |
| 252 | 0                                 | 166                                          | 123                                    | 62                                                    | 0                                                                 | 31                                                                        |
| 63  | 127                               | 17                                           | 1                                      | 0                                                     | 99                                                                | 30                                                                        |
|     | 10<br>58<br>135<br>1<br>89<br>252 | 10 9   58 197   135 5   1 1   89 144   252 0 | 10962581974613551881129891441472520166 | 10962125819746461355188191112926891441471872520166123 | 10962127858197464601355188191681129263789144147187102252016612362 | 1096212783458197464600135518819168011292637089144147187102622520166123620 |

| X.2 | X 0 | X.2 |
|-----|-----|-----|
| ХO  | X.2 | ХO  |
| X 2 | X 0 | X.2 |

Note: This is not matrix multiplication!

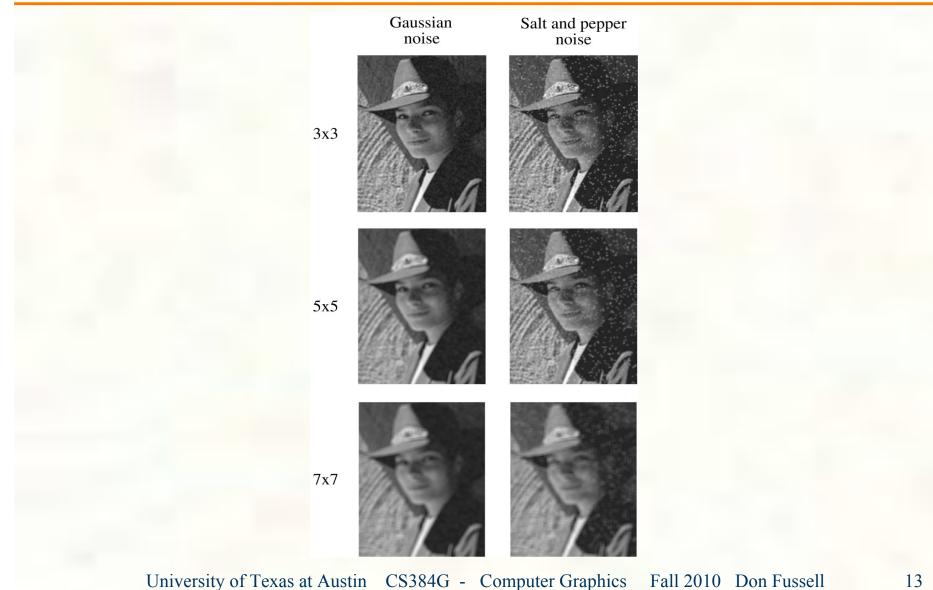
**Q**: What happens at the edges?



How can we represent our noise-reducing averaging filter as a convolution diagram (know as a mean filter)?



## Effect of mean filters





## Gaussian filters

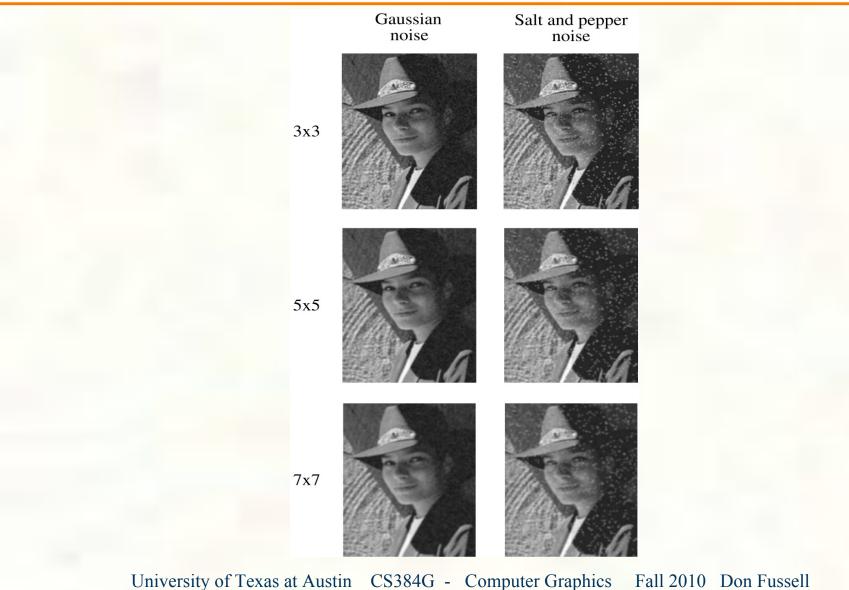
Gaussian filters weigh pixels based on their distance from the center of the convolution filter. In particular:

$$h[i, j] = \frac{e^{-(i^2 + j^2)/(2\sigma^2)}}{C}$$

- This does a decent job of blurring noise while preserving features of the image.
- What parameter controls the width of the Gaussian?
- What happens to the image as the Gaussian filter kernel gets wider?
- What is the constant *C*? What should we set it to?



## Effect of Gaussian filters





## Median filters

- A median filter operates over an mxm region by selecting the median intensity in the region.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

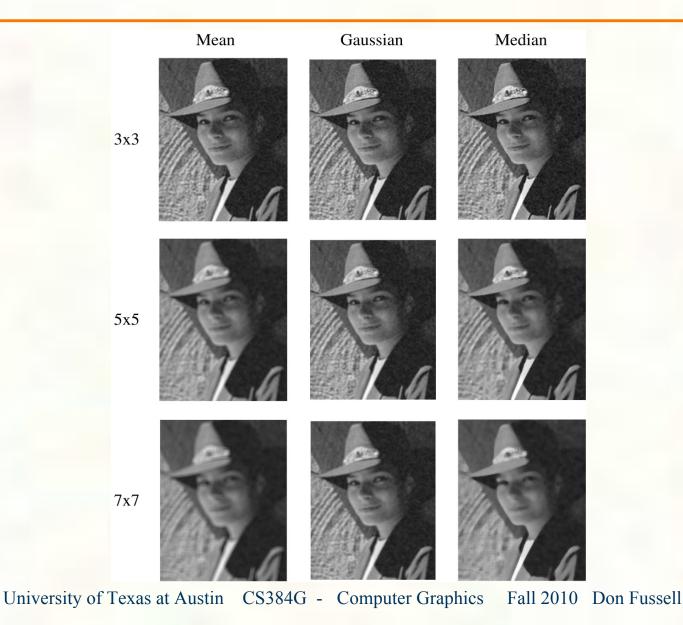


## Effect of median filters

Gaussian Salt and pepper noise noise 3x3 5x5 7x7

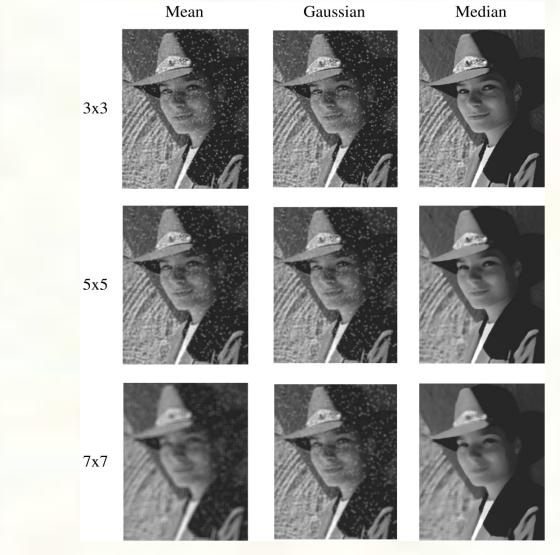


## Comparison: Gaussian noise





### Comparison: salt and pepper noise





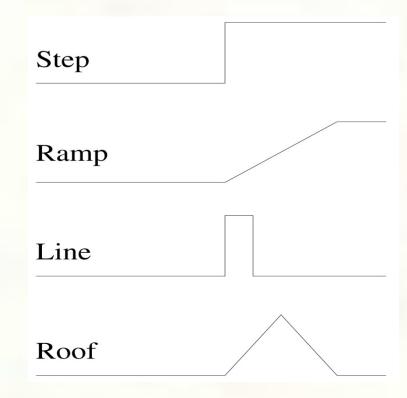
## Edge detection

One of the most important uses of image processing is edge detection:
Really easy for humans
Really difficult for computers

Fundamental in computer visionImportant in many graphics applications



## What is an edge?



#### **Q**: How might you detect an edge in 1D?



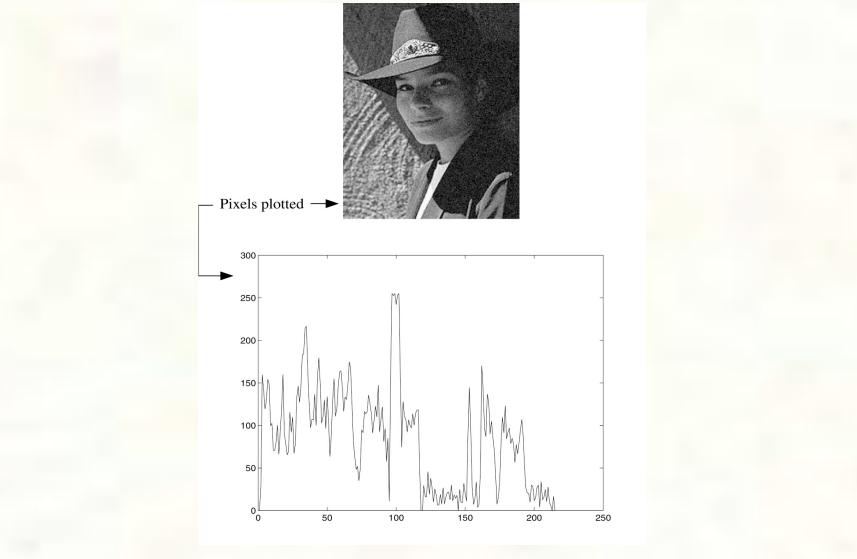
The gradient is the 2D equivalent of the derivative:

$$\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

Properties of the gradient

- It's a vector
- Points in the direction of maximum increase of f
- Magnitude is rate of increase
- How can we approximate the gradient in a discrete image?







- Edge detection algorithms typically proceed in three or four steps:
  - Filtering: cut down on noise
  - Enhancement: amplify the difference between edges and non-edges
  - **Detection**: use a threshold operation
  - Localization (optional): estimate geometry of edges beyond pixels



## Edge enhancement

A popular gradient magnitude computation is the Sobel operator:

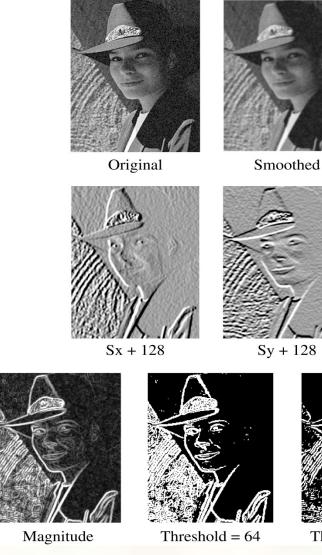
$$s_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

 $s_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$ 

We can then compute the magnitude of the vector  $(s_x, s_y)$ .



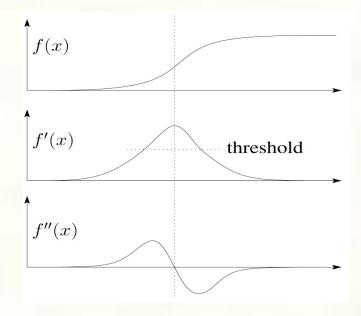
## Results of Sobel edge detection



Threshold = 128



# Second derivative operators



The Sobel operator can produce thick edges. Ideally, we're looking for infinitely thin boundaries.

An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.

**Q**: A peak in the first derivative corresponds to what in the second derivative?

**Q**: How might we write this as a convolution filter?



- An equivalent measure of the second derivative in 2D is the Laplacian:  $\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
- Using the same arguments we used to compute the gradient filters, we can derive a Laplacian filter to be:

$$\Delta^2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Zero crossings of this filter correspond to positions of maximum gradient. These zero crossings can be used to localize edges.



# Localization with the Laplacian



Original



Smoothed

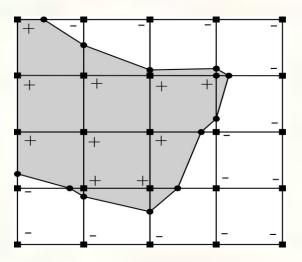


Laplacian (+128)



## Marching squares

We can convert these signed values into edge contours using a "marching squares" technique:





# Sharpening with the Laplacian



Original



#### Laplacian (+128)



**Original + Laplacian** 



**Original - Laplacian** 

Why does the sign make a difference? How can you write each filter that makes each bottom image?



# Spectral impact of sharpening

We can look at the impact of sharpening on the Fourier spectrum:

#### Spatial domain



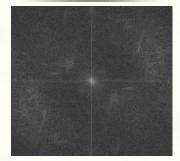
$$\delta - \Delta^2 = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$



#### Frequency domain









- What you should take away from this lecture:
  - The meanings of all the boldfaced terms.
  - How noise reduction is done
  - How discrete convolution filtering works
  - The effect of mean, Gaussian, and median filters
  - What an image gradient is and how it can be computed
  - How edge detection is done
  - What the Laplacian image is and how it is used in either edge detection or image sharpening



## Next time: Affine Transformations

- Topic:
- How do we represent the rotations, translations, etc. needed to build a complex scene from simpler objects?
- Read:
  - Watt, Section 1.1.
  - Optional:
    - Foley, et al, Chapter 5.1-5.5.
    - David F. Rogers and J. Alan Adams,

Mathematical Elements for Computer Graphics, 2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.