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Fourier Transforms
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Fourier series

To go from f(θ ) to f(t) substitute

To deal with the first basis vector being of
length 2π instead of π, rewrite as
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Fourier series

The coefficients become

dttktf
T

a

Tt

t

k !
+

=
0

0

)cos()(
2

0"

dttktf
T

b

Tt

t

k !
+

=
0

0

)sin()(
2

0"



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010   Don Fussell

Fourier series

Alternate forms
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Complex exponential notation

Euler’s formula )sin()cos( xixe
ix

+=

Phasor notation:
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Euler’s formula

Taylor series expansions

Even function ( f(x) = f(-x) )

Odd function ( f(x) = -f(-x) )
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Complex exponential form

Consider the expression

So
Since an and bn are real, we can let
and get
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Complex exponential form

Thus

So you could also write
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Fourier transform

We now have

Let’s not use just discrete frequencies, nω0 ,
we’ll allow them to vary continuously too

We’ll get there by setting t0=-T/2 and taking
limits as T and n approach ∞
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Fourier transform
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Fourier transform

So we have (unitary form, angular frequency)

Alternatives (Laplace form, angular frequency)
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Fourier transform

Ordinary frequency
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Fourier transform

Some sufficient conditions for application
Dirichlet conditions

 f(t) has finite maxima and minima within any finite interval

 f(t) has finite number of discontinuities within any finite
interval

Square integrable functions (L2 space)

Tempered distributions, like Dirac delta
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Fourier transform

Complex form – orthonormal basis functions for
space of tempered distributions
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