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Interpolating curves
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Reading

Optional
Bartels, Beatty, and Barsky.  An Introduction to
Splines for use in Computer Graphics and
Geometric Modeling, 1987.  (See course
reader.)
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Parametric curve review
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Parametric curves
We use parametric curves, Q(u)=(x(u),y(u)),
where x(u) and y(u) are cubic polynomials:

Advantages:
easy (and efficient) to compute
“well behaved”
infinitely differentiable

We also assume that u varies from 0 to 1
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Various ways to set A,B,C,D

0) Directly – non-intuitive; not very useful.
1) Set positions and derivatives of endpoints:
          “Hermite Curve”
2) Use “control points” that indirectly influence the curve:

  “Bezier curve”:
             - interpolates endpoints
                 - does not interpolate
                    middle control points

  “B-spline”
               - does not interpolate
                    ANY control points
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Splines = join cubic curves

Considerations
What kind of continuity at join points (“knots”)?

C0 = value
C1 = first derivative
C2 = second derivative

How do control points work?

B-spline
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Spline summary

Joined Hermite curves:
C1 continuity
Interpolates control points

B-splines:
C2 continuity
Does not interpolate control points

Can we get…
C2 continuity
Interpolates control points

That’s what we’ll talk about towards
the end of this lecture.
But first, some other useful tips.
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Useful tips for Bézier curves
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Displaying Bézier curves
How could we draw one of these things?

It would be nice if we had an adaptive algorithm, that
would take into account flatness.

DisplayBezier( V0, V1, V2, V3 )
begin
       if ( FlatEnough( V0, V1, V2, V3 ) )
              Line( V0, V3 );
       else
              something;
end;
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Subdivide and conquer

DisplayBezier( V0, V1, V2, V3 )

begin
       if ( FlatEnough( V0, V1, V2, V3 ) )
              Line( V0, V3 );
       else
               Subdivide(V[]) ⇒ L[], R[]
              DisplayBezier( L0, L1, L2, L3 );
              DisplayBezier( R0, R1, R2, R3 );
end;
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Testing for flatness

Compare total length of control polygon to
length of line connecting endpoints:
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Tips for B-splines

B-spline:
- C2 continuity
- does not interpolate any ctrl points
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Endpoints of B-splines
We can see that B-splines don’t interpolate the control
points.
It would be nice if we could at least control the endpoints
of the splines explicitly.
There’s a trick to make the spline begin and end at control
points by repeating them.
In the example below, let’s force interpolation of the last
endpoint: (use endpoint 3 times)
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Tips for animator project
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What if we want a closed curve, i.e., a loop?
With Catmull-Rom and B-spline curves,
this is easy:

Closing the loop
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C2 interpolating curves
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Simple interpolating splines

Join several Hermite curves:
- Make derivatives match
- You still have ability to pick what that
  matched derivative is.
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Cardinal splines
If we set each derivative to be some positive scalar multiple k of the
vector between the previous and next controls, we get a Cardinal
spline.
This leads to:

for any two consecutive interior points pi and pi+1 (we can deal with
the endpoints separately if need be)

Think of τ as a parameter that controls the tension of the spline
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Cardinal splines
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Catmull-Rom splines
If we set τ = 1/2, we get a Catmull-Rom spline.
So:

for any two consecutive interior points pi and pi+1 (again dealing with
endpoints separately as needed)
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Catmull-Rom blending functions
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C2 interpolating splines
How can we keep the C2 continuity we get with B-splines
but get interpolation, too?
Again start with connected cubic curves.
Each cubic segment is an Hermite curve for which we get
to set the position and derivative of the endpoints.
That leaves us with a spline that’s C0 and C1 such as a
Catmull-Rom or Cardinal spline.
But interestingly, there are other ways to choose the values
of the (shared) first derivatives at the join points.
Is there a way to set those derivatives to get other useful
properties?
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Find second derivatives
So far, we have:

    C0, C1 continuity
    Derivatives are still free, as ‘D0…D4’

Compute second derivatives at both sides
of every join point:

For p1:
For p2:
…

! 

" " Q 0(1) = 6p0 # 6p1 + 2D0 + 4D1 " " Q 1(0) = #6p1 + 6p2 # 4D1 # 2D2

" " Q 1(1) = 6p1 # 6p2 + 2D1 + 4D2
" " Q 2(0) = #6p2 + 6p3 # 4D2 # 2D3
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Match the second derivatives

Now, symbolically set the second derivatives to
be equal.
For p1

For p2

     …! 

6p0 " 6p1 + 2D0 + 4D1 = "6p1 + 6p2 " 4D1 " 2D2

3(p2 "p0) =D0 + 4D1 +D2

! 

6p1 " 6p2 + 2D1 + 4D2 = "6p2 + 6p3 " 4D2 " 2D3

3(p3 "p1) =D1 + 4D2 +D3
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Not quite done yet

How many equations is this?   m-1
How many unknowns are we solving for?  m+1
We have two additional degrees of freedom, which we can
nail down by imposing more conditions on the curve.
There are various ways to do this.  We’ll use the variant
called natural C2 interpolating splines, which requires
the second derivative to be zero at the endpoints.
This condition gives us the two additional equations we
need.

At the P0 endpoint, it is:
At the Pm endpoint, we have:

''

0 (0) 0Q =
''

1(1) 0
m
Q
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Solving for the derivatives

Let’s collect our m+1 equations into a single linear
system:

It’s easier to solve than it looks.
See the notes from Bartels, Beatty, and Barsky for
details.
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C2 interpolating spline

Once we’ve solved for the real Dis, we can plug
them in to find our Bézier or Hermite curves and
draw the final spline:

Have we lost anything?
=> Yes, local control.
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Next time: Subdivision curves

Basic idea:
Represent a curve as an iterative

         algorithm, rather than as an explicit
         function.
Reading:

• Stollnitz, DeRose, and Salesin. Wavelets for
   Computer Graphics: Theory and Applications,
   1996, section 6.1-6.3, A.5.
   [Course reader pp. 248-259 and pp. 273-274]


