

Reading

■ Recommended:
-Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 10.2.

Building complex models

We can extend the idea of subdivision from curves to surfaces...

Subdivision surfaces

■ Chaikin's use of subdivision for curves inspired similar techniques for subdivision surfaces.
\square Iteratively refine a control polyhedron (or control mesh) to produce the limit surface

$$
\sigma=\lim _{j \rightarrow \infty} M^{j}
$$

using splitting and averaging steps.

Triangular subdivision

■ There are a variety of ways to subdivide a poylgon mesh.

- A common choice for triangle meshes is $4: 1$ subdivision - each triangular face is split into four subfaces:

Original

After splitting

Loop averaging step

- Once again we can use masks for the averaging step:

Vertex neighorhood

Averaging mask

- where

$$
\mathbf{Q} \leftarrow \frac{\alpha(n) \mathbf{Q}+\mathbf{Q}_{1}+\cdots+\mathbf{Q}_{n}}{\alpha(n)+n} \quad \alpha(n)=\frac{n(1-\beta(n))}{\beta(n)} \quad \beta(n)=\frac{5}{4}-\frac{(3+2 \cos (2 \pi / n))^{2}}{32}
$$

- These values, due to Charles Loop, are carefully chosen to ensure smoothness - namely, tangent plane or normal continuity.
- Note: tangent plane continuity is also known as G^{1} continuity for surfaces.

Loop evaluation and tangent masks

- As with subdivision curves, we can split and average a number of times and then push the points to their limit positions.

Evaluation mask

Tangent masks

$$
\begin{aligned}
\mathbf{Q}^{\infty} & =\frac{\varepsilon(n) \mathbf{Q}+\mathbf{Q}_{1}+\cdots+\mathbf{Q}_{n}}{\varepsilon(n)+n} \\
\mathbf{T}_{1}^{\infty} & =\tau_{1}(n) \mathbf{Q}_{1}+\tau_{2}(n) \mathbf{Q}_{2}+\cdots+\tau_{n}(n) \mathbf{Q}_{n} \\
\mathbf{T}_{2}^{\infty} & =\tau_{n}(n) \mathbf{Q}_{1}+\tau_{1}(n) \mathbf{Q}_{2}+\cdots+\tau_{n-1}(n) \mathbf{Q}_{n}
\end{aligned}
$$

- where $\quad \varepsilon(n)=\frac{3 n}{\beta(n)} \quad \tau_{i}(n)=\cos (2 \pi i / n)$

■ How do we compute the normal?

Recipe for subdivision surfaces

■ As with subdivision curves, we can now describe a recipe for creating and rendering subdivision surfaces:
$■$ Subdivide (split+average) the control polyhedron a few times. Use the averaging mask.
$■$ Compute two tangent vectors using the tangent masks.
■ Compute the normal from the tangent vectors.
\square Push the resulting points to the limit positions. Use the evaluation mask.
■ Render!

Adding creases without trim curves

- In some cases, we want a particular feature such as a crease to be preserved. With NURBS surfaces, this required the use of trim curves.
- For subdivision surfaces, we can just modify the subdivision mask:

- This gives rise to G^{0} continuous surfaces (i.e., having positional but not tangent plane continuity)

Creases without trim curves, cont.

■ Here's an example using Catmull-Clark surfaces (based on subdividing quadrilateral meshes):

Face schemes

- $4: 1$ subdivision of triangles is sometimes called a face scheme for subdivision, as each face begets more faces.
- An alternative face scheme starts with arbitrary polygon meshes and inserts vertices along edges and at face centroids:

- Catmull-Clark subdivision:

- Note: after the first subdivision, all polygons are quadilaterals in this scheme.

Subdivision $=$ tensor-product patches $!$

- For a regular quadrilateral mesh, Catmull-Clark subdivision produces the same surface as tensorproduct cubic B-splines!
\square But - it handles irregular meshes as well.
There are similar correspondences between other subdivision schemes and other tensor-product patch schemes.

These correspondences can be proven (but we won't do it...)

Vertex schemes

- In a vertex scheme, each vertex begets more vertices. In particular, a vertex surrounded by n faces is split into n sub-vertices, one for each face:

After splitting

- Doo-Sabin subdivision:

- The number edges (faces) incident to a vertex is called its valence. Edges with only once incident face are on the boundary. After splitting in this subdivision scheme, all nonboundary vertices are of valence 4.

Interpolating subdivision surfaces

- Interpolating schemes are defined by
- splitting
- averaging only new vertices
- The following averaging mask is used in butterfly subdivision:

- Setting $t=0$ gives the original polyhedron, and increasing small values of t makes the surface smoother, until $t=1 / 8$ when the surface is provably G^{1}.

There are several variants of Butterfly subdivision.

Next class: Projections \& Z-Buffers

- Topics:
- How do projections from 3D world to

2D image plane work?

- How does the Z-buffer visibility algorithm (used in today's graphics hardware) work?

Read:

- Watt, Section 5.2.2 - 5.2.4, 6.3, 6.6 (esp. intro and subsections 1,4 , and 8-10)

Optional:

- Foley, et al, Chapter 5.6 and Chapter 6
- David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, 2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.
- I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, A characterization of ten hidden surface algorithms, ACM Computing Surveys 6(1): 1-55, March 1974.

