
Point Masses
and Force
Fields

Donald Fussell

Particle
Dynamics

Particles

Vector Fields

1st-order ODEs

Moving Particles

Timestep Errors

Force Fields

2nd-order ODEs

Phase Space

Euler, with Force

Better
Methods

Error Analysis

Symplectic Euler

Störmer-Verlet

Velocity Verlet

Point Masses and Force Fields

Donald Fussell

Computer Science Department
The University of Texas at Austin

October 28, 2014



Point Masses
and Force
Fields

Donald Fussell

Particle
Dynamics

Particles

Vector Fields

1st-order ODEs

Moving Particles

Timestep Errors

Force Fields

2nd-order ODEs

Phase Space

Euler, with Force

Better
Methods

Error Analysis

Symplectic Euler

Störmer-Verlet

Velocity Verlet

Particle Dynamics

• Simple classical dynamics - point masses moved by forces

• Point masses can model particles

• They can be grouped to model macroscopic objects

• Forces can move particles

• Forces can constrain point masses to be part of larger
objects

• Used in particle systems, cloth, rigid bodies, etc.
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Particles

At time t, a particle has

• A position

~x(t) =

[
x(t)
y(t)

]
• A velocity

~v(t) = ẋ(t) =

[
dx(t)
dt

dy(t)
dt

]

• An acceleration

~a(t) = ẍ(t) =
d~v(t)

dt
=

d2~x(t)

dt2
=

 d2x(t)

dt2

d2y(t)

dt2


• And a mass m

y

x
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Vector Fields

• Ignore acceleration and mass for now and let the velocity be dictated
by a function g of position and time, so ẋ(t) = g(~x(t), t).

• At any time t, the function g defines a vector field over ~x.

• This vector field specifies the velocity of a particle located at position
~x(t) at time t.

y

x
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1st-order ODEs

• The equation ẋ(t) = g(~x(t), t) is a first-order ordinary differential
equation (ODE).

• We need to use it to compute the path that a particle takes through

the vector field if it starts at a given initial position.

• This path is called an integral curve.
• The problem is called an initial value problem, a special case

of a boundary value problem.

y

x
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Moving Particles

Given ẋ(t) = g(~x(t), t), we want to solve for x(t), the particle’s trajectory.

We can do this numerically.

Euler’s Method

• Choose a discrete timestep ∆t.

• Iterate, taking linear steps in the direction of the velocity at the
beginning of each step.

~x(t + ∆t) = ~x(t) + ẋ(t) · ∆t = ~x(t) + g(~x(t), t) · ∆t

• In simpler timestep iteration notation

~xi+1 = ~xi + ~vi · ∆t

This is the simplest (but not the best) way to numerically integrate a
first-order ODE.



Point Masses
and Force
Fields

Donald Fussell

Particle
Dynamics

Particles

Vector Fields

1st-order ODEs

Moving Particles

Timestep Errors

Force Fields

2nd-order ODEs

Phase Space

Euler, with Force

Better
Methods

Error Analysis

Symplectic Euler

Störmer-Verlet

Velocity Verlet

Timestep Errors

• Problem: discrete steps in instantaneously valid directions

• Bigger steps, bigger errors

• Timestep error ∼ O(∆t2), global error ∼ O(∆t)

• Need to take pretty small steps, so maybe not efficient

• Step size needed depends on rate of velocity change

• Better methods allow bigger timesteps, we’ll see some later

y
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Force Fields

For particle dynamics, we won’t have a g(~x(t), t) to specify
velocities directly, rather we’ll compute velocities from the
forces acting on particles

Since particles obey Newton’s Law: ~f = m~a = mẍ

And since in general force (and thus acceleration) can depend
on the position and velocity of a particle

We have

~a(t) = ẍ(t) =
~f(~x(t), ẋ(t), t)

m
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2nd-order ODEs

Equations with a second derivative in them (like ẍ) are called
second-order ODEs.
Euler’s Method and related techniques handle first-order ODEs.

Turning higher-order ODEs into first-order ODEs

We have

ẍ(t) =
~f(~x(t), ẋ(t), t)

m

If we introduce the velocity variable ~v(t), we can rewrite this as a pair of
coupled first-order ODEs [

ẋ(t) = ~v(t)

v̇(t) =
~f(~x(t),~v(t),t)

m

]
We can treat this as a first-order ODE in phase space[

ẋ(t)
v̇(t)

]
=

[
~v(t)

~f(~x(t),~v(t),t)
m

]
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Phase Space

We can concatenate vectors to form
vectors in higher-dimensional space,
called phase space. If ~x and ~v are
each 3-dimensional, we get a
6-dimensional phase space.

[
~x(t)
~v(t)

]

We can take time derivatives in
phase space.

[
ẋ(t)
v̇(t)

]

We can have vector fields in phase
space, like our force field. (Yes, I
know it sounds like Star Trek.)

~f(~x(t), ~v(t), t)

We can have ODEs in phase space
too.

[
ẋ(t)
v̇(t)

]
=

[
~v(t)

~f(~x(t),~v(t),t)
m

]
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ẋ(t)
v̇(t)

]
=

[
~v(t)

~f(~x(t),~v(t),t)
m

]



Point Masses
and Force
Fields

Donald Fussell

Particle
Dynamics

Particles

Vector Fields

1st-order ODEs

Moving Particles

Timestep Errors

Force Fields

2nd-order ODEs

Phase Space

Euler, with Force

Better
Methods

Error Analysis

Symplectic Euler

Störmer-Verlet

Velocity Verlet

Phase Space

We can concatenate vectors to form
vectors in higher-dimensional space,
called phase space. If ~x and ~v are
each 3-dimensional, we get a
6-dimensional phase space.

[
~x(t)
~v(t)

]

We can take time derivatives in
phase space.

[
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Euler, with Force

We can solve

[
ẋ(t)
v̇(t)

]
=

[
~v(t)

~f(~x(t),~v(t),t)
m

]
using Euler’s Method.

Euler’s Method in Phase Space

• Choose a discrete timestep ∆t and iterate, as before.

~x(t + ∆t) = ~x(t) + ~v(t) · ∆t

~v(t + ∆t) = ~v(t) +
~f(~x(t), ~v(t), t)

m
· ∆t

• With timestep indices

~xi+1 = ~xi + ~vi · ∆t

~vi+1 = ~vi +
~fi(~xi, ~vi)

m
· ∆t

This is just what we did before except we’re updating ~v iteratively along
with ~x.
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Better Methods

• Euler’s Method is first-order, so

• The error per timestep (local error) is proportional to ∆t2.
• The cumulative (global) error is proportional to ∆t.

• This isn’t very good, small timesteps are often needed to keep the
computation from diverging.

• This is a particular problem for stiff systems.

• For our purposes, these are roughly systems with really
stiff springs in them, or something exerting very strong
forces that can change rapidly.

• That’s not a definition, which is much harder.

• A related problem is that Euler’s Method is not symplectic. It does
not conserve energy (or come close to doing so) as the simulation
proceeds.
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Error Analysis

We said Euler’s Method is local order O(∆t2) and global order
O(∆t). What do we mean’?

We simulate from t0 to T by taking n timesteps of size ∆t.
The total error at time T , e(∆t, T ) = |~x(T )− ~xn|, the
difference between the correct position at T and the simulated
position after the nth timestep.

e(∆t, T ) is a function of both the timestep size ∆t and the
total simulation time T . The order of an integration method
describes how e(∆t, T ) changes as a function of ∆t, holding T
constant.
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Error Analysis

Local order O(∆t2) means changing ∆t changes the worst-case
truncation error proportionally to ∆t2. Global order O(∆t)
means a change in ∆t changes the worst case cumulative
truncation error of the entire simulation proportionally to ∆t.

This doesn’t tell you much about how the simulation error
grows as the overall simulation time T grows. This depends on
many factors, what ODEs you’re integrating, the initial
conditions, etc.

A method with a higher global order is better than a
lower-order method because it gets worse more slowly as you
increase the timestep size, not because you have any idea how
far off the right answer it will get in the actual simulation.



Point Masses
and Force
Fields

Donald Fussell

Particle
Dynamics

Particles

Vector Fields

1st-order ODEs

Moving Particles

Timestep Errors

Force Fields

2nd-order ODEs

Phase Space

Euler, with Force

Better
Methods

Error Analysis

Symplectic Euler

Störmer-Verlet

Velocity Verlet

Symplectic Euler

Assume that ~f is only a function of position and not of velocity, i.e. it is
~f(~x(t), t). We don’t model wind resistance, for example, but we can still
handle a lot of interesting forces.

Now we can easily fix Euler’s Method to make it symplectic.

Semi-implicit Euler Integration

• We can use ~vi+1 instead of ~vi to compute ~xi+1

~vi+1 = ~vi +
~fi(~xi)

m
· ∆t

~xi+1 = ~xi + ~vi+1 · ∆t

• Alternatively, we can use ~xi+1 instead of ~xi to compute ~vi+1

~xi+1 = ~xi + ~vi · ∆t

~vi+1 = ~vi +
~fi(~xi+1)

m
· ∆t
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Störmer-Verlet

Euler’s Method can be obtained from the Taylor series for
~x(t + ∆t) and ~v(t + ∆t).

~x(t + ∆t) = ~x(t) + ẋ(t)∆t + O(∆t2)

~v(t + ∆t) = ~v(t) + v̇(t)∆t + O(∆t2)

We just throw away the quadratic and higher order terms,
which is why the local error is proportional to ∆t2.

We can use similar derivations to get better methods.

For instance, the techniques we’ve seen so far aren’t
time-reversible, which proper physics should be. Let’s try for
that property.
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Störmer-Verlet

We can do Taylor series in both time directions

~x(t + ∆t) = ~x(t) + ẋ(t)∆t + 1/2ẍ(t)∆t2 + 1/6
...
x(t)∆t3 + O(∆t4)

~x(t− ∆t) = ~x(t) − ẋ(t)∆t + 1/2ẍ(t)∆t2 − 1/6
...
x(t)∆t3 + O(∆t4)

Störmer-Verlet Integration

Add them and apply some algebra to get

~x(t + ∆t) = 2~x(t) − ~x(t− ∆t) + ẍ(t)∆t2 + O(∆t4)

Throw away the O(∆t4) local error term, write as an iteration, put in the
forcing function for the acceleration, and we have

~xi+1 = 2~xi − ~xi−1 +
~fi(~xi)

m
∆t2

We’re given initial ~x0 and ~v0, but we also need ~x1, so

~x1 = ~x0 + ~v0∆t +
1

2

~fi(~x0)

m
∆t2
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Störmer-Verlet

• Störmer-Verlet advantages
• It is time-reversible, symplectic, local O(t4) and global

O(t2), or second-order.
• Easy to use for constraints between particles (e.g. infinitely

stiff springs), especially for rigid bodies, cloth, etc. See
Jakobsen’s famous GamaSutra article
http://www.gamasutra.com/resource guide/20030121/jacobson pfv.htm

• Störmer-Verlet disadvantages
• Multistep method, needs adjustment for non-constant ∆t.

~xi+1 = ~xi + (~xi − ~xi−1)
∆ti

∆ti−1
+

~fi(~xi)

m

∆ti + ∆ti−1

2
∆ti

• Doesn’t calculate velocities.
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Velocity Verlet

If we need velocities, we can just calculate them from the Störmer-Verlet
point positions.

~vi =
~xi+1 − ~xi−1

∆ti + ∆ti−1
+ O(∆t2) or ~vi+1 =

~xi+1 − ~xi

∆ti
+ O(∆t)

More commonly, they are incorporated into the iteration as the

Velocity Verlet Method

Expand ~x(t + ∆t) = ~x(t) + ~v(t)∆t + 1
2
~a∆t2 + O(∆t3)

Expand forward ~v(t + ∆t) = ~v(t) + ~a(t)∆t + O(∆t2)
and reverse ~v(t) = ~v(t + ∆t) − ~a(t + ∆t)∆t + O(∆t2)

Add the latter two to get ~v(t + ∆t) = ~v(t) + 1
2
(~a(t) + ~a(t + ∆t))∆t

So we have

~xi+1 = ~xi + ~vi∆t +
1

2

~fi(~xi)

m
∆t2

~vi+1 = ~vi +
~fi(~xi) +~fi+1(~xi+1)

2m
∆t
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