Anti-aliased and accelerated ray tracing
Required:
- Watt, sections 12.5.3 – 12.5.4, 14.7

Further reading:
One of the most common rendering artifacts is the “jaggies”. Consider rendering a white polygon against a black background:

We would instead like to get a smoother transition:
Anti-aliasing

- Q: How do we avoid aliasing artifacts?
 1. Sampling:
 2. Pre-filtering:
 3. Combination:

- Example - polygon:
Polygon anti-aliasing

Without antialiasing

With antialiasing

Magnification

The University of Texas at Austin CS384G - Computer Graphics Don Fussell
Antialiasing in a ray tracer

- We would like to compute the average intensity in the neighborhood of each pixel.

- When casting one ray per pixel, we are likely to have aliasing artifacts.
- To improve matters, we can cast more than one ray per pixel and average the result.
- A.k.a., **super-sampling and averaging down**.
Speeding it up

- Vanilla ray tracing is really slow!
- Consider: $m \times m$ pixels, $k \times k$ supersampling, and n primitives, average ray path length of d, with 2 rays cast recursively per intersection.
- Complexity =
- For $m=1,000,000$, $k = 5$, $n = 100,000$, $d=8$...very expensive!!
- In practice, some acceleration technique is almost always used.
- We’ve already looked at reducing d with adaptive ray termination.
- Now we look at reducing the effect of the k and n terms.
Antialiasing by adaptive sampling

- Casting many rays per pixel can be unnecessarily costly.
- For example, if there are no rapid changes in intensity at the pixel, maybe only a few samples are needed.
- Solution: **adaptive sampling**.

Q: When do we decide to cast more rays in a particular area?
Let’s say you were intersecting a ray with a polyhedron:

- **Straightforward method**
 - intersect the ray with each triangle
 - return the intersection with the smallest t-value.
- **Q:** How might you speed this up?
Ray Tracing Acceleration Techniques

Approaches

- **Faster Intersection**
 - Uniform grids
 - Spatial hierarchies
 - k-d, oct-tree, bsp
 - Hierarchical grids
 - Hierarchical bounding volumes (HBV)

- **Fewer Rays**
 - Tighter bounds
 - Faster intersector

- **Generalized Rays**
 - Early ray termination
 - Adaptive sampling

- Beam tracing
 - Cone tracing
 - Pencil tracing
Another approach is **uniform spatial subdivision**.

Idea:
- Partition space into cells (voxels)
- Associate each primitive with the cells it overlaps
- Trace ray through voxel array using fast incremental arithmetic to step from cell to cell
Uniform Grids

- Preprocess scene
- Find bounding box
Uniform Grids

- Preprocess scene
 - Find bounding box
 - Determine resolution

\[n_v = n_x n_y n_z \propto n_o \]

\[\max(n_x, n_y, n_z) = d^{3} \sqrt{n_o} \]
Uniform Grids

- Preprocess scene
 - Find bounding box
 - Determine resolution
 - Place object in cell, if object overlaps cell

\[
\max(n_x, n_y, n_z) = d^{\frac{3}{n_o}}
\]
Uniform Grids

- Preprocess scene
 - Find bounding box
 - Determine resolution
- Place object in cell, if object overlaps cell
- Check that object intersects cell

$$\max(n_x, n_y, n_z) = d \sqrt[3]{n_o}$$
Uniform Grids

- Preprocess scene
- Traverse grid
 3D line – 3D-DDA
 6-connected line
Caveat: Overlap

- Optimize for objects that overlap multiple cells

- Traverse until $t_{\text{min}}(\text{cell}) > t_{\text{max}}(\text{ray})$

- Problem: Redundant intersection tests:

- Solution: Mailboxes
 - Assign each ray an increasing number
 - Primitive intersection cache (mailbox)
 - Store last ray number tested in mailbox
 - Only intersect if ray number is greater
Non-uniform spatial subdivision

- Still another approach is **non-uniform spatial subdivision**.

Other variants include k-d trees and BSP trees.

Various combinations of these ray intersections techniques are also possible. See Glassner and pointers at bottom of project web page for more.
Non-uniform spatial subdivision

- Best partitioning approach - k-d trees or perhaps BSP trees
 - More adaptive to actual scene structure
 - BSP vs. k-d tradeoff between speed from simplicity and better adaptability

- Non-partitioning approach
 - Hierarchical bounding volumes
 - Build similar to k-d tree build
Kd-tree - Build
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Surface Area and Rays

- Number of rays in a given direction that hit an object is proportional to its projected area

\[A \]

- The total number of rays hitting an object is

\[4\pi \bar{A} \]

- Crofton’s Theorem:
 - For a convex body
 \[\bar{A} = \frac{S}{4} \]
 - For example: sphere

\[S = 4\pi r^2 \quad \bar{A} = A = \pi r^2 \]
Surface Area and Rays

- The probability of a ray hitting a convex shape that is completely inside a convex cell equals

\[\Pr[r \cap S_o \mid r \cap S_c] = \frac{S_o}{S_c} \]
Surface Area Heuristic

Intersection time

\[t_i \]

Traversal time

\[t_t \]

\[t_i = 80t_t \]

\[C = t_t + p_a N_a t_i + p_b N_b t_i \]
Surface Area Heuristic

\[p_a = \frac{S_a}{S} \quad \quad \quad p_b = \frac{S_b}{S} \]

2n splits
Ray Traversal Kernel

Depth first traversal

\[t_{\text{max}} < t^* \]

\[t_{\min} < t^* < t_{\text{max}} \]

\[t^* < t_{\text{min}} \]

- \(\text{Intersect}(L, t_{\min}, t_{\text{max}}) \)
- \(\text{Intersect}(L, t_{\min}, t^*) \)
- \(\text{Intersect}(R, t^*, t_{\text{max}}) \)
- \(\text{Intersect}(R, t_{\min}, t_{\text{max}}) \)
Kd-tree - Traversal

Stack:

Current: Root

The University of Texas at Austin CS384G - Computer Graphics Don Fussell
Kd-tree - Traversal

Stack: R

Current: L

The University of Texas at Austin CS384G - Computer Graphics Don Fussell
Kd-tree - Traversal

Stack: R

Current: LL
Kd-tree - Traversal

Stack: LLR,R

Current: LLL

The University of Texas at Austin CS384G - Computer Graphics Don Fussell
Kd-tree - Traversal

Stack: LLR,R

Current: LLLR
Kd-tree - Traversal

Stack:
R

Current:
LLL

The University of Texas at Austin CS384G - Computer Graphics Don Fussell
Kd-tree - Traversal

Stack:

Current: R

The University of Texas at Austin CS384G - Computer Graphics Don Fussell
Kd-tree - Traversal

Stack: RR

Current: RL
Kd-tree - Traversal

Stack:

Current:

RR

The University of Texas at Austin CS384G - Computer Graphics Don Fussell
Kd-tree - Traversal

Stack:

Current:

RRR

The University of Texas at Austin CS384G - Computer Graphics Don Fussell
Variations

kd-tree oct-tree bsp-tree
Hierarchical bounding volumes

- We can generalize the idea of bounding volume acceleration with hierarchical bounding volumes (or bounding volume hierarchies (BVH)).

- Key: build balanced trees with tight bounding volumes.

Many different kinds of bounding volumes.
Note that bounding volumes can overlap.