Animation
Animation

Motion over time
Animation

Motion over time

Usually focus on character animation but environment is often also animated

- trees, water, fire, explosions, …
Animation

Motion over time

Usually focus on character animation but environment is often also animated
• trees, water, fire, explosions, …

Could be physically realistic, or stylized
Traditional Character Animation

Lead animator draws sparse key frames

Secondary artists fill in (by hand) the intermediate frames: inbetweening
Computer Character Animation

How to inbetween automatically?

Linear interpolation?
Computer Character Animation

How to inbetween automatically?

Linear interpolation?
• No
Computer Character Animation

How to inbetween automatically?

Need way to parameterize motion
Handle-Based Animation

Pick special points (handles) on object

Moving handles moves nearby points
Joint-Based Animation

Extend this idea to line segments:

set of bones inside a character is called a **rig**

we will discussing rigging in detail next lecture
Cage-Based Animation

Surround object with animation cage

Moving the cage moves interior points
Simplest Cage: Triangle

Use barycentric interpolation
Simplest Cage: Triangle

Use barycentric interpolation

\[q = \alpha \tilde{p}_1 + \beta \tilde{p}_2 + \gamma \tilde{p}_3 \]
Simplest Cage: Triangle

Use barycentric interpolation

\[q = \alpha p_1 + \beta p_2 + \gamma p_3 \]
\[\tilde{q} = \alpha \tilde{p}_1 + \beta \tilde{p}_2 + \gamma \tilde{p}_3 \]
Simplest Cage: Triangle

Use barycentric interpolation

For every pixel:
find its barycentric coordinates
look up point with same coordinates on undeformed shape
copy pixel at that point
Polygonal Cages

Must generalize barycentric coordinates to arbitrary polygons

\[q = \alpha p_1 + \beta p_2 + \gamma p_3 + \delta p_4 + \epsilon p_5 \]
Polygonal Cages

Must generalize barycentric coordinates to arbitrary polygons

Many ways to do this: generalized barycentric coordinates not unique

\[q = \alpha p_1 + \beta p_2 + \gamma p_3 + \delta p_4 + \epsilon p_5 \]
Generalized Barycentric Coords

Partition of unity:

\[1 = \sum \alpha_i \]

why important?

\[q = \sum \alpha_i p_i \]
Generalized Barycentric Coords

Partition of unity:

\[1 = \sum \alpha_i \]

Reproduces the verts:

\[\alpha_i(p_j) = \begin{cases}
1, & i = j \\
0, & i \neq j
\end{cases} \]
Polygonal Cages

Other properties:
1. Weights must be positive inside the polygon (or get leaks)
Polygonal Cages

Other properties:
1. Weights must be positive inside the polygon (or get \textit{leaks})
2. Weights must unique (or get \textit{flips})
Other properties:

1. Weights must be positive inside the polygon (or get **leaks**)
2. Weights must unique (or get **flips**)
3. Smooth
4. Easy to compute
Many Possible Schemes

Wachspress Coordinates
Mean-value Coordinates
Green Coordinates
Bounded Biharmonic Weights
…
Cage-Based Animation

Extends to 3D from 2D naturally
Cage-Based Animation

Extends to 3D from 2D naturally

Full control, but not intuitive
Character Rigs

Skeletons inside the geometry

moving bones moves surrounding geometry

the industry standard for character animation

how to build rig?
Building a Rig

Usually done by hand using Maya etc.

Expressiveness/complexity tradeoff
Building a Rig

Some automatic tools exist

[Pinocchio]

[Mixamo]
Building a Rig

Some automatic tools exist

Work well for humans/humanlike objects
Not so impressive for arbitrary characters
Representing a Rig

Tree of **bones** connected by **joints**

- Bones have two endpoints
- First attached to parent
Joint Local Coordinates

Origin O at joint location
Coordinate axes: initially, same as world
Joint Local Coordinates

Origin O at joint location
Coordinate axes: initially, same as world

\[(a, b, c) = O + a\hat{v}^1 + b\hat{v}^2 + c\hat{v}^3 \]
Joint Local Coordinates

Child bone can be expressed in terms of parent coordinate system.

\[O_2 = B_{12}O_1 \]
Joint to World Coordinates

In local coordinates:

\[q = (x, y, z) \]
Joint to World Coordinates

In local coordinates:
\[q = (x, y, z) \]

In world coordinates:
\[q = O_3 + x\hat{v}_1 + y\hat{v}_2 + z\hat{v}_3 \]
Joint to World Coordinates

In local coordinates:
\[q = (x, y, z) \]

In world coordinates:
\[q = O_3 + x\hat{v}_1^3 + y\hat{v}_2^3 + z\hat{v}_3^3 = U_3 \]
\[U_{i+1} = U_i B_{i(i+1)} \]
Articulating the Joints

Represent motion by a rotation T_i per joint

$$O_2 = B_{12}O_1 \quad V_2 = V_1T_2$$
Deformed Joint to World

In local coordinates:
\[q = (x, y, z) \]

In world coordinates:
\[q = O_3 + x\hat{v}_1^3 + y\hat{v}_2^3 + z\hat{v}_3^3 = D_3 \]
\[D_{i+1} = D_i B_{i(i+1)} T_{i+1} \]
Forward Kinematics

O_1 Base

O_2 Parent

O_3 Child

$q_{\text{world}} = U_3 q_{\text{local}}$

changing T_1 also changes child coordinate systems

$q_{\text{world}} = D_3 q_{\text{local}}$
Skinning

Moving bones moves the character

Closer bones have more influence

We will discuss the details on Thursday
Other 3D Animation Techniques

Anatomy-based animation
• simulate the tendons and muscles

Most correct motion
Restricted to “real” animals

Slow
Other 3D Animation Techniques

Faces are hard to rig: many muscles

instead, precompute a small set of *basis deformations*

blend between them (*blendshapes*)
Other 3D Animation Techniques

Faces are hard to rig: many muscles instead, precompute a small set of basis deformations blend between them (blendshapes) knobs not always intuitive
Other 3D Animation Techniques

SCAPE: data-driven statistical model of human body shapes

rig a “mean” template human once by hand

for an arbitrary human, transfer the rig by fitting to a SCAPE model

works well only for (nearly) naked humans