Skinning
Nearest-Bone Skinning

Recall **skinning**: given motion of skeleton, how does skin move?
Nearest-Bone Skinning

Recall **skinning**: given motion of skeleton, how does skin move?

Given: **undeformed** (rest) skeleton and **deformed** skeleton
Coordinate Systems

undeformed joints

world

deformed joints
Coordinate Systems

\[U_3 = U_{2B23} \]

translation (offset) of joint 3 wrt. joint 2

world

undeformed joints

dehomed joints
Coordinate Systems

translation (offset) of joint 3 wrt. joint 2

map from parent coords to world (recursive)

$U_3 = U_2B_{23}$

undeformed joints

deformed joints
Coordinate Systems

\[U_3 = U_2 B_{23} \]

\[D_3 = D_2 B_{23} T_3 \]

rotation of child joint (identity = undeformed)

undeformed joints

deformed joints
Coordinate Systems

undeformed joints

deformed joints

$U_3 = U_2B_{23}$

$D_3 = D_2B_{23}T_3$

rotation of child joint (identity = undeformed)

change in A_1
Coordinate Systems

\[U_3 = U_2 B_{23} \]

\[D_3 = D_2 B_{23} T_3 \]

same joint cords!
Coordinate Systems

Key (and confusing) point:

- U_3 maps from undeformed local to world coords (doesn’t move point)
Coordinate Systems

Key (and confusing) point:

• U_3 maps from undeformed local to world coords (doesn’t move point)
• **Identity** maps undeformed to deformed bone coords (and does move point)

[Diagram showing undeformed joints and transformed points]
Nearest-Bone Skinning

Undeformed to deformed skin position (world coordinates):

$$\tilde{q} = D_3 U_3^{-1} q$$
Nearest-Bone Skinning

Undeformed to deformed skin position (world coordinates):

$$\tilde{q} = D_3 U_3^{-1} q$$

joint controlling nearest bone
Nearest-Bone Skinning

Undeformed to deformed skin position (world coordinates):

\[\tilde{q} = D_3 U_3^{-1} q \]

changes during animation

joint controlling nearest bone
Problems with Nearest-Bone

Which bone does point belong to?

\[D_1 U_1^{-1} q \]

\[D_2 U_2^{-1} q \]
Problems with Nearest-Bone

Which bone does point belong to?

One solution: \textbf{average}

\[
\left[\frac{1}{2} D_1 U_1^{-1} + \frac{1}{2} D_2 U_2^{-1} \right] q
\]

\[
D_1 U_1^{-1} q
\]

\[
D_2 U_2^{-1} q
\]
Linear-Blend Skinning

Each vertex feels weighted average of each joint’s transformations

\[
\tilde{q}_i = \sum_{\text{joints} j} w_{ij} D_j U_j^{-1} q_i
\]

Joints controlling nearby bones have higher weight
Linear-Blend Skinning

How to determine skinning weights w?

Use only nearest bone
Linear-Blend Skinning

How to determine **skinning weights** w?

- Use only nearest bone
- Spatially blend the weights

(In practice: paint weights by hand)
The “Arm Twist” Problem

(Why does this happen?)
Blending Transformations

Each individual joint undergoes a rigid transformation

• combination rotation and translation
Blending Transformations

Each individual joint undergoes a rigid transformation
• combination rotation and translation

Arm twist / candy wrapper problem:
• linear blend of rigid motions not rigid
Blending Transformations

Translations alone: trivial to blend

\[\{t_1, \ldots, t_n\} \mapsto \sum_i \alpha_i t_i \]
Blending Transformations

Translations alone: trivial to blend

\[\{t_1, \ldots, t_n\} \mapsto \sum_i \alpha_i t_i \]

Rotations alone: blend using SLERP

- use quaternions
- do not use Euler angles!
Blending Transformations

Idea: separately blend translation and rotation components of rigid motion

\[T_1 \]

\[T_2 \]

\[\text{blend}(T_1, T_2, t) \]
Separate Transforms: Problem

where is the child bone half way in between the motion?
Separate Transforms: Problem

where is the child bone half way in between the motion?

(where is it the origin?)
Separate Transforms: Problem

where is the child bone half way in between the motion?
(where it the origin?)
Separate Transforms: Problem

where is the child bone halfway in between the motion?

(where it the origin?)
Separate Transforms: Problem

where is the child bone half way in between the motion?

(where it the origin?)
Separate Transforms: Problem

where is the child bone halfway in between the motion?

(where it the origin?)

blend\((T_1, T_2, 1/2)\)
Separate Transforms: Problem

Blended transformation not coordinate-independent

- different origins --> totally different blends
Separate Transforms: Problem

Blended transformation **not** coordinate-independent

- different origins --> totally different blends

- must also blend **centers of rotation**
Dual Quaternion Skinning

Represents rigid motion as pair of quaternions, solving all these problems no more arm twisting issues

used in Maya, etc.
Other Skinning Challenges

Volume Conservation
Avoiding Animation Altogether

Motion capture ("mocap")
Avoiding Animation Altogether

Simulation ("inverse kinematics")
Animation Recap

Most common pipeline:

- build a 3D model of the character
- **rig** the 3D model (build a skeleton inside)
- **skin** the model (determine joint-skin weights)
- animate the skeleton by specifying **keyframes**; skin moves with it
Animation Recap

Most common pipeline:
• model, rig, skin, animate

Automatic approaches exist for each step
• not great, but getting better
Animation Recap

Most common pipeline:
• model, rig, skin, animate

Automatic approaches exist for each step
• not great, but getting better

Still a grand challenge: use Kinect to build a fully rigged and skinned digital digital avatar