Curves and Splines
Curves in Spaces

Parametric function $\gamma(t)$
Curves in Spaces

Parametric function $\gamma(t)$
Simple curves have well-known formulas:

$$\gamma(t) = (\cos t, \sin t)$$
Curves in Spaces

Parametric function $\gamma(t)$

Simple curves have well-known formulas:

$$\gamma(t) = (\cos t, \sin t)$$

What to do in general?
Linear Interpolation

Straight line segment between two points

\[\gamma(0) = P_0 \]

\[\gamma(1) = P_1 \]
Linear Interpolation

Straight line segment between two points

\[\gamma(t) = P_0 + t(P_1 - P_0) \]
\[\gamma(t) = (1 - t)P_0 + tP_1 \]
\[\gamma(0) = P_0 \]
\[\gamma(1) = P_1 \]
Linear Interpolation

Straight line segment between two points

\[\gamma(u_0) = P_0 \]
\[\gamma(u_1) = P_1 \]

Also works for arbitrary parameterization
Linear Interpolation

Straight line segment between two points

\[\gamma(t) = \frac{u_1-t}{u_1-u_0} P_0 + \frac{t-u_0}{u_1-u_0} P_1 \]

\[\gamma(u_0) = P_0 \]

\[\gamma(u_1) = P_1 \]

Also works for arbitrary parameterization
Piecewise Linear Interpolation

Straight line segment between point list

points in parameter space (knots) (how fast it goes)

points in space (where curves goes)
Piecewise Linear Interpolation

Straight line segment between point list

\[\gamma(t) = \frac{u_{i+1} - t}{u_{i+1} - u_i} P_i + \frac{t - u_i}{u_{i+1} - u_i} P_{i+1} \]

points in space
(where curves go)

points in parameter space
(knots)

(how fast it goes)
Piecewise Linear Interpolation

“Pyramid Notation”

$$\gamma(t) = \frac{u_{i+1} - t}{u_{i+1} - u_i} P_i + \frac{t - u_i}{u_{i+1} - u_i} P_{i+1}$$
Piecewise Linear Interpolation

“Pyramid Notation”

\[
\gamma(t) = \frac{u_{i+1} - t}{u_{i+1} - u_i} P_i + \frac{t - u_i}{u_{i+1} - u_i} P_{i+1}
\]

(denominator by \textbf{sum} implicit)
Piecewise Linear Interpolation

Easy, but “chunky” – only C^0
Piecewise Linear Interpolation

Easy, but “chunky” – only C^0

Continuity notation: C^m means continuous after taking n derivatives
Lagrange Interpolation

Given some points, find polynomial

\[\gamma(t) = \left[\begin{array}{c} a_x + b_x t + c_x t^2 + \ldots \\ a_y + b_y t + c_y t^2 + \ldots \end{array} \right] \]
Lagrange Interpolation

Given some points, find polynomial

\[
\gamma(t) = \begin{bmatrix}
 a_x + b_x t + c_x t^2 + \ldots \\
 a_y + b_y t + c_y t^2 + \ldots
\end{bmatrix}
\]

Notice: each coordinate is **linear combination** of a power of t
Lagrange Interpolation

Given some points, find polynomial

\[\gamma(t) = \begin{bmatrix} a_x & b_x & c_x & \cdots \\ a_y & b_y & c_y & \cdots \end{bmatrix} \begin{bmatrix} 1 \\ t \\ t^2 \\ \vdots \end{bmatrix} \]

Notice: each coordinate is linear combination of a power of t
Lagrange Interpolation

Given some points, find polynomial

\[\gamma(t) = C_{2 \times k} \begin{bmatrix} 1 \\ t \\ t^2 \\ \vdots \end{bmatrix}_{k \times 1} \]

Notice: each coordinate is linear combination of a power of t
Lagrange Interpolation

Given some points, find polynomial

\[\gamma(t) = C_{2 \times k} \begin{bmatrix} 1 \\ t \\ t^2 \\ \vdots \end{bmatrix}_{k \times 1} \]

How to pick \(k \)?
Lagrange Interpolation

Given some points, find polynomial

\[P_i = C_{2 \times k} \left[\begin{array}{c} 1 \\ u_i \\ u_i^2 \\ \vdots \\ \end{array} \right]_{k \times 1} \]

How to pick \(k \)? Use known points
Lagrange Interpolation

Given some points, find polynomial

\[
P_0 = \gamma(u_0)
\]

How to pick \(k\)? Use known points
Lagrange Interpolation

Given some points, find polynomial

\[
\begin{bmatrix}
 P_0 & P_1 & P_2 \\
\end{bmatrix} = C_{2 \times k}
\begin{bmatrix}
 1 & 1 & 1 \\
 u_0 & u_1 & u_2 \\
 u_0^2 & u_1^2 & u_2^2 \\
 \vdots & \vdots & \vdots \\
\end{bmatrix}_{k \times n}
\]

How to pick \(k \)? Use \(k = n \)
Lagrange Interpolation

Given some points, find polynomial

\[
\begin{bmatrix}
P_0 & P_1 & P_2
\end{bmatrix} = C_{2 \times n} \begin{bmatrix}
1 & 1 & 1 \\
u_0 & u_1 & u_2 \\
u_0^2 & u_1^2 & u_2^2
\end{bmatrix}_{n \times n}
\]

How to pick \(k \)? Use \(k = n \)
Lagrange Interpolation

Given some points, find polynomial

$$C_{2 \times n} = \begin{bmatrix} P_0 & P_1 & P_2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ u_0 & u_1 & u_2 \\ u_0^2 & u_1^2 & u_2^2 \end{bmatrix}^{-1}$$

How to pick k? Use $k = n$
Lagrange Interpolation

Given some points, find polynomial

- 2: linear interpolation
- 3: quadratic interp.
Lagrange Interpolation

Given some points, find polynomial

n points \rightarrow degree $(n-1)$

- 2: linear interpolation
- 3: quadratic interp.

Curves are C^{n-2} smooth
Lagrange Interpolation

Given some points, find polynomial of degree \((n-1)\)

- \(2\): linear interpolation
- \(3\): quadratic interpolation

Curves are \(C^{n-2}\) smooth

What’s the problem?
Lagrange Interpolation

No oscillation control
Lagrange Interpolation

No oscillation control

Worse as degree becomes larger
Lagrange Interpolation

No oscillation control

Worse as degree becomes larger

Lagrange interpolation not practical for large no. of points
Introducing Splines
Bézier Curves

Spline building block

Polynomial
Bézier Curves

Spline building block

Polynomial

Variation-diminishing: curve lies in convex hull of points
Bézier Curves

Spline building block

Polynomial

Variation-diminishing: curve lies in convex hull of points

Cost: only interpolates endpoints
de Casteljau’s Algorithm

Given:
- sequence of control points P_i
- single value of $t \in [0, 1]$

Computes:
- location of $\gamma(t)$
de Casteljau’s Algorithm

Main idea: recursive linear interpolation
Start with four points – control polygon
de Casteljau’s Algorithm

Main idea: recursive linear interpolation
Start with four points – control polygon
Clip corners

\[P_0 \quad P_1 \quad P_2 \quad P_3 \]
de Casteljau’s Algorithm

Main idea: recursive linear interpolation
Start with four points – **control polygon**
Clip corners

![Diagram of de Casteljau's Algorithm](image)
de Casteljau’s Algorithm

Four control points \rightarrow cubic Bézier curve
de Casteljau’s Algorithm

More control points \rightarrow smoother curve
(more pyramid levels)
de Casteljau’s Algorithm

Time complexity?
de Casteljau’s Algorithm

Time complexity?

$O(n^2)$ for each evaluation
de Casteljau’s Algorithm

Time complexity?

$O(n^2)$ for each evaluation

Also, for long curve, may not want global influence of control points
B-Splines ("Basis Splines")

Piecewise polynomial
- (cubic common)

Used in Illustrator, Inkscape, etc
B-Splines ("Basis Splines")

Piecewise polynomial
• (cubic common)

Used in Illustrator, Inkscape, etc

Arbitrary number of control points
• only first and last interpolated
de Boor’s Algorithm

Pyramid algorithm, like de Casteljau

\[\alpha_i = u_i - t \]
\[\beta_i = t - u_i \]
de Boor’s Algorithm

Pyramid algorithm, like de Casteljau

\[\frac{\alpha_{i+1}}{\beta_{i-2} + \alpha_{i+1}} P_{i-1} + \frac{\beta_{i-2}}{\beta_{i-2} + \alpha_{i+1}} P_i \]

\[\alpha_i = u_i - t \]
\[\beta_i = t - u_i \]
de Boor’s Algorithm

Pyramid algorithm, like de Casteljau

\[\alpha_i = u_i - t \]
\[\beta_i = t - u_i \]
de Boor’s Algorithm

Pyramid algorithm, like de Casteljau
Final answer depends on **four** control pts

\[\alpha_i = u_i - t \]
\[\beta_i = t - u_i \]
de Boor’s Algorithm

Pyramid algorithm, like de Casteljau
Final answer depends on **four** control pts
six knots

\[
\alpha_i = u_i - t \\
\beta_i = t - u_i
\]
de Boor’s Algorithm

Knots triplicated at boundaries

\[u_0 = u_1 = u_2 \quad u_3 \quad u_{n-2} = u_{n-1} = u_n \]
de Boor’s Algorithm

Knots triplicated at boundaries

Higher degree \rightarrow more pyramid levels
more duplicates at bdry

\[u_0 = u_1 = u_2 \quad u_3 \quad u_{n-2} = u_{n-1} = u_n \]
Other Spline Types

Hermite

- can also specify derivatives at boundary
Other Spline Types

Hermite
• can also specify derivatives at boundary

Catmull-Rom
• interpolatory
Spline Keywords

Interpolatory
• spline goes through all control points

Linear
• curve pts linear in control points

Degree n
• curve pts depend on nth power of t

Uniform
• knots evenly spaced