Building Panoramic Image Mosaics

Input images

\forall automatically created mosoric

Image Mosaicing
Technique:
(1) Take multiple photos while rotating camera on a Tripod (or by hand)

(2) Warp \& align the photos
(3) Blend photos to compute final mosaic

* In general, photos must be warped to align their contents!

Step 1: Capture

Important:

- Camera should change onentation, not position
- Keep camera settings (gain, focus speed, aperture) fixed if possible

Step 2: Warp \& Align

$\Downarrow \quad 28 / 57$ images aligned

Step 2: Warp \& Align (Continued)

$\uparrow 57 / 57$ images aligned

Step 3: Blend

Laplacian Dyramid Blending $\|$ seams not visible anymore

Representing Pixels by Euclidean 2D Coordinates

- Standard" (Euclidean) representation of an image point p :

$$
p=x \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Euclidean Coordinates \Rightarrow Homogeneous Coordinates

- "Standard" (Euclidean) representation of an image point p :

$$
P=x \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Homogeneous (a.k.a. Projective) representation of P

image coordinates	homogeneous 2D coordinates
$\left[\begin{array}{l}x \\ y\end{array}\right]$	

y

1\end{array}\right]\)

2D Homogeneous Coordinates: Definition

- For any $\lambda \neq 0$, the numbers $\lambda x, \lambda y, \lambda$ are called the homogeneous coordinates of point P

Definition:
Homogeneous representation of p
P represented by any 3D vector $\left[\begin{array}{l}a_{x} \\ a_{y} \\ a^{\prime}\end{array}\right]$ with $\lambda \neq 0$

- Homogeneous (a.k.a. Projective) representation of P

image coordinates	homogeneous 2D coordinates
$\left[\begin{array}{l}x \\ y\end{array}\right]$	

2 . y

\lambda .1\end{array}\right] \lambda \neq 0\)

2D Homogeneous Coordinates: Equality

Examples:

$$
\text { Is }\left[\begin{array}{l}
3 \\
4 \\
6
\end{array}\right] \cong\left[\begin{array}{c}
6 \\
8 \\
12
\end{array}\right] \text { ? Yes }(\text { take } \lambda=2)
$$

- Is $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \cong\left[\begin{array}{l}0 \\ 0 \\ 30\end{array}\right]$? (take N2330)
. Is $\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right] \cong\left[\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right]$? no l

Definition (Homogeneous Equality)
Two vectors of homogeneous coors $v_{1}=\left[\begin{array}{l}x \\ y \\ w\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right]$ are called equal if they represent the same $2 D$ point:
$v_{1} \cong V_{2}$ denotes homos. equality
there is a $\lambda \neq 0$ such that

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\lambda\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]
$$

Homogeneous Coordinates \Rightarrow Euclidean Coordinates

Converting from homogeneous to Euclidean coordinates:
$\left[\begin{array}{l}a \\ b \\ c\end{array}\right],\left[\begin{array}{c}a / c \\ b / c \\ 1\end{array}\right] \begin{aligned} & \text { represent the } \\ & \text { same 2D point }\end{aligned}$
$\Leftrightarrow 2 D$ coordinates are $\left[\begin{array}{l}a / c \\ b / c\end{array}\right]$

$$
v_{1} \cong v_{2}
$$

there is a $\lambda \neq 0$ such that

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\lambda\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]
$$

Homogeneous Coordinates \Rightarrow Euclidean Coordinates

Practice exercise: Plot positions of the following points

$$
P_{6}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad P_{7}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

$$
P_{1}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right] \quad P_{2}=\left[\begin{array}{l}
10 \\
0 \\
2
\end{array}\right] \quad P_{3}=\left[\begin{array}{l}
0 \\
8 \\
4
\end{array}\right] \quad P_{4}=\left[\begin{array}{l}
1 \\
0 \\
0.0001
\end{array}\right] \quad P_{5}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Points at ∞ in Homogeneous Coordinates Image
$\uparrow P_{G}$ at infinity on y axis
P_{7} at
infinity on live $y=x$

Useful property \# 1:
Even points infinitely far away have a finite representation in homogeneous coords!
$P_{q} \rightarrow$ vern far to right

$P_{s} \rightarrow$ at infinity on x axis!
leads to very stable geometric computations

$$
\begin{aligned}
& P_{6}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad P_{7}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& P_{4}=\left[\begin{array}{l}
1 \\
0 \\
0.0001
\end{array}\right] \quad P_{5}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Line Equations in Homogeneous Coordinates

Example: line $y=x$ in homogeneous coords:

$$
\begin{aligned}
& 1 \cdot x-1 \cdot y+0.1 \geq 0 \\
& \begin{array}{l}
\text { linemeneles } \\
\text { Porameles } \\
\text { of } l
\end{array} \underbrace{\left[\begin{array}{ll}
1-1 & 0
\end{array}\right]}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=0
\end{aligned}
$$

- The equation of a line

$$
\begin{aligned}
& a x+b y+c=0 \\
& \text { line parameters }
\end{aligned}
$$

- In homogeneous coordinates

$$
\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=0
$$

or $l^{\top} \cdot p=0$
vector holding rector holding line parameters homogeneous coordinates of a point

The Line Passing Through 2 Points

- l must satisfy $l^{\top} \cdot P_{1}=0, l_{1}^{\top} p_{2}=0$
- taken as 3D vectors, l is perpendicular to both P_{1} and P_{2} \Rightarrow it is along the cross product, $p_{2} \times p_{2}$

Calculating the parameters of a line through two points with homogeneous coordinates p_{1}, p_{2}

$$
l=P_{1} \times P_{2}
$$

个 cross product of two 3D vectors

In homogeneous coordinates

$$
\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=0
$$

or $l^{\top} \cdot p=0$

The Point of Intersection of Two Lines

Calculating the homogeneous coordinates of the intersection of two lines l_{1}, l_{2}

$$
P=l_{1} \underset{\substack{\text { cross product of } \\ \text { two 3D vectors }}}{ } l_{2}
$$

- P must satisfy $l_{1}^{\top} \cdot p=0, l_{2}^{\top}, P=0$
- taken as 3D vectors, P is perpendicular to both l_{1} and l_{2} \Rightarrow it is along the cross product, $l_{1} \times l_{2}$ or $l^{\top} \cdot p=0$

Computing the Intersection of Parallel Lines

Calculating the homogeneous coordinates of the intersection of two lines l_{1}, l_{2}

$$
p=l_{1} \underset{\substack{\text { cross product of } \\ \text { two 30 vectors }}}{\times l_{2}}
$$

This calculation works even when l_{1}, l_{2} are parallel!
(no floating point exceptions or divide-by-zero errors!)

Computing the Intersection of Parallel Lines

Image

- Line eq. of l_{1} is $y=1$. Also written as $0 \cdot x+1 \cdot y-1=0$. So $l_{1}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$
. Similarly $l_{2}=\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right]$

Calculating the homogeneous coordinates of the intersection of two lines l_{1}, l_{2}

$$
p=l_{1} \quad \underset{\substack{\text { cross product of } \\ \text { two 3D vectors }}}{ } \times l_{2}
$$

Aside (calculating cross products): If $l_{12}(a, b, c)$ then

$$
l_{1} \times l_{2}=\left[\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right] l_{2}
$$

Lines from Points \& Points from Lines

Line through 2 points

$$
l=P_{1} \times P_{2}=\left[\begin{array}{ccc}
0 & -p_{2}^{z} & p_{1}^{y} \\
p_{1}^{z} & 0 & -p_{1}^{x} \\
-p_{1}^{y} & p_{1}^{x} & 0
\end{array}\right]\left[\begin{array}{l}
p_{2}^{x} \\
p_{2} y \\
p_{2}^{z}
\end{array}\right]
$$

Useful property $\# 2$

- Very simple way of computing \& intersecting lines
- Numerical stability even when result is at ∞

Intersection of 2 lines $P=l_{1} \times l_{2}=\left[\begin{array}{ccc}0 & -l_{1}^{z} & l_{1}^{y} \\ l_{1}^{z} & 0 & -l_{1}^{x} \\ -l_{1}^{y} & l_{1}^{x} & 0\end{array}\right]\left[\begin{array}{l}l_{2}^{x} \\ l_{2}^{y} \\ l_{2}^{z}\end{array}\right]$

Linear Image Warps

Basic insight:
To align multiple photos for mosaiang we must warp then in a way that preserves all lines
(1.e. lines before warping remain lines after warping)

Linear Image Warps \& Homographies

The matrix H is called a tomography

- Definition (Linear Image Warps)

An image warp is called linear if every $2 D$ line l in the original image is transformed into a line l^{\prime} in the warped image (ic. the warp preserves all lines in the original photo)

- Property (w/out proof)

Every linear warp can be expressed as a 3×3 matrix H that transforms homogeneous image coordinates

Warping Images Using a Homography

- Linear warping equation

$$
I(p)=I^{\prime}(H p)
$$

intensity at pixel in source intensity at pixel in warped image with homogeneous image with homogeneous coordinates $p \quad$ coordinates $p^{\prime}=\mathrm{Hp}$
Warped Image I'

- Property (w/out proof)

Every linear warp can be expressed as a 3×3 matrix H
The matrix H is called a tomography that transforms homogeneous image coordinates

