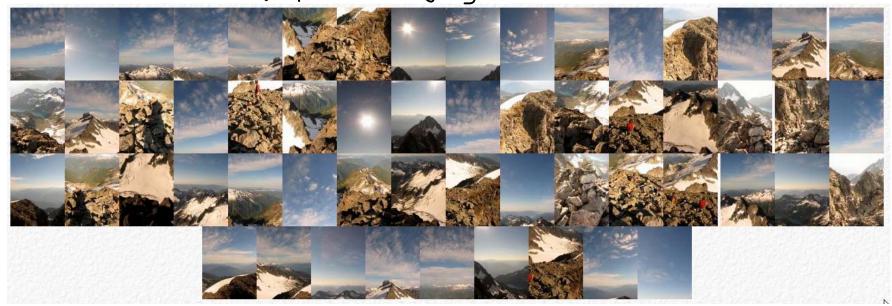
#### **Building Panoramic Image Mosaics**

Input Images



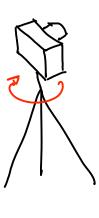
If automatically created mosque



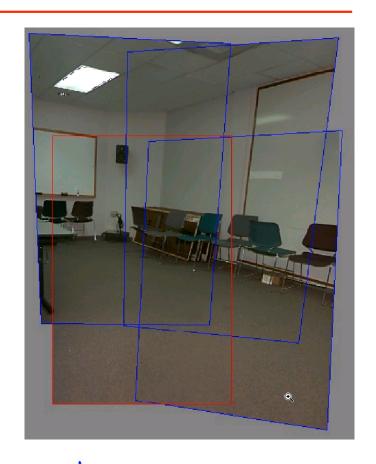
## **Image Mosaicing**

## Technique:

D Take multiple photos while rotating camera on a tripod (or by hand)



- 2) Warp & align the Photos
- 3) Blend photos to compute final mosaic



\* In general, photos
must be warped
to align their
contents!

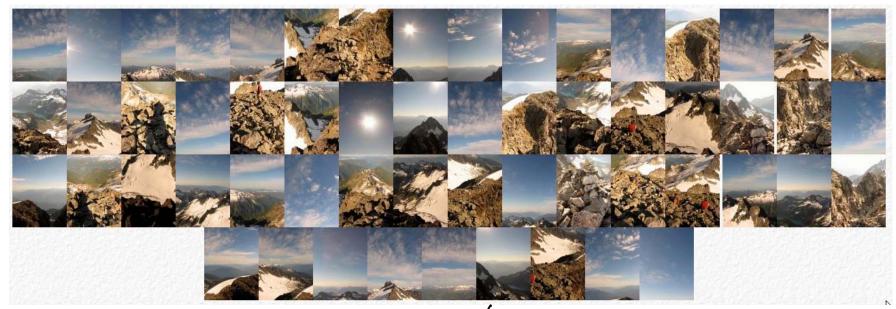
## Step 1: Capture



#### Important:

- · Camera should change onentation, not position
- . Keep camera settings (gain, focus, speed, aperture) fixed if possible

# Step 2: Warp & Align



V 28/57 images aligned



# Step 2: Warp & Align (Continued)



1) 57/57 images aligned



#### Step 3: Blend

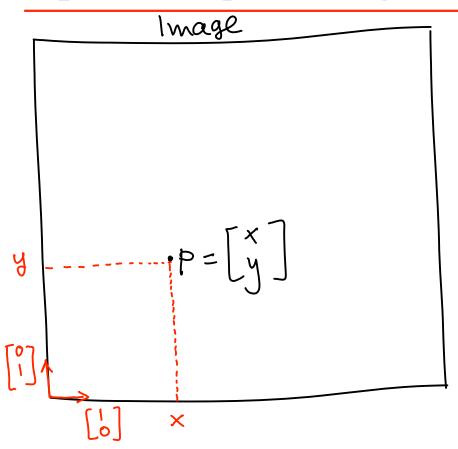


Laplacian Pyramid Blending I seams not visible anymore



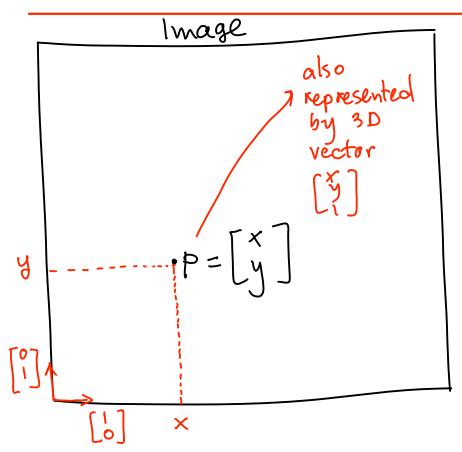
(Brown & Lowe; ICCV 2003) google "Lowe Brown Autostitch"

#### Representing Pixels by Euclidean 2D Coordinates



"Standard" (fuclidean)
representation of an image
point p:

#### **Euclidean Coordinates** $\Rightarrow$ **Homogeneous Coordinates**

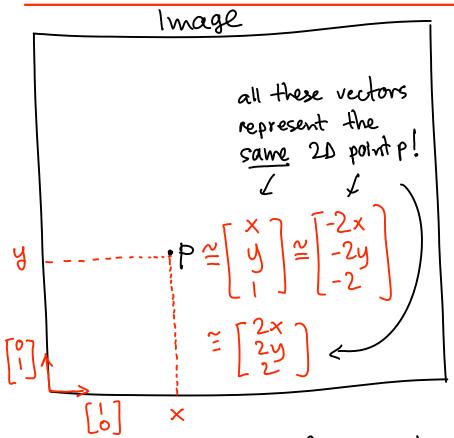


"Standard" (fuclidean)
representation of an image
point p:

$$P = X \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

· Homogeneous (a.k.a. Projective)
representation of p

# 2D Homogeneous Coordinates: Definition



For any 070, the numbers
0x,0y,0 are called the
homogeneous coordinates
of point P

Definition:

Homogeneous representation of P

p represented by any\_ 3D vector [ay] with  $\Delta \neq 0$ 

· Homogeneous (a.t.a. Projective)
representation of p

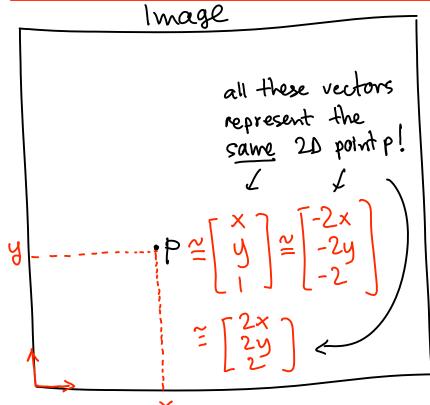
mage homogeneous 2D coordinates

(x)

(y)

\[ \text{\alpha} \times \\ \text{\alpha} \times \\ \text{\alpha} \text{\alpha} \\ \text{\

# 2D Homogeneous Coordinates: Equality



# Definition (Homogeneous Equality)

Two vectors of homogeneous coords  $V_1 = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } V_2 = \begin{bmatrix} x' \\ y' \end{bmatrix} \text{ are}$ 

called <u>equal</u> if they represent the same 2D point:

Examples:

(S) 
$$\begin{bmatrix} 3 \\ 4 \end{bmatrix} \approx \begin{bmatrix} 6 \\ 8 \\ 12 \end{bmatrix}$$
? Yes

(Is)  $\begin{bmatrix} 6 \\ 8 \end{bmatrix} \approx \begin{bmatrix} 6 \\ 8 \\ 12 \end{bmatrix}$ ? (take  $n=2$ )

(Is)  $\begin{bmatrix} 6 \\ 6 \end{bmatrix} \approx \begin{bmatrix} 9 \\ 30 \end{bmatrix}$ ? (take  $n=2$ )

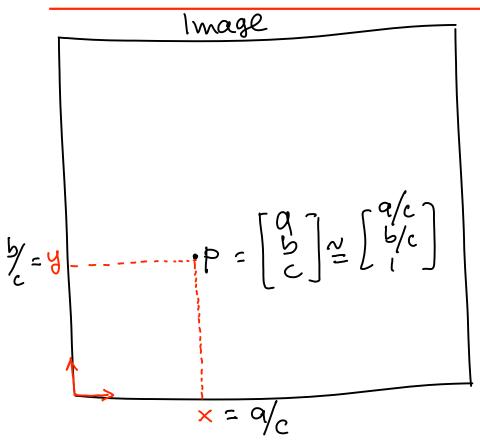
(Is)  $\begin{bmatrix} 6 \\ 6 \end{bmatrix} \approx \begin{bmatrix} 9 \\ 30 \end{bmatrix}$ ?  $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \approx \begin{bmatrix} -2 \\ 4 \end{bmatrix}$ ? No!

V<sub>1</sub>=
$$V_2$$
 denotes homog.  
equality

there is a  $\lambda \neq 0$  such that

$$\begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix}$$

# **Homogeneous Coordinates** ⇒ **Euclidean Coordinates**



Conventing from homogeneous to Euclidean coordinates:

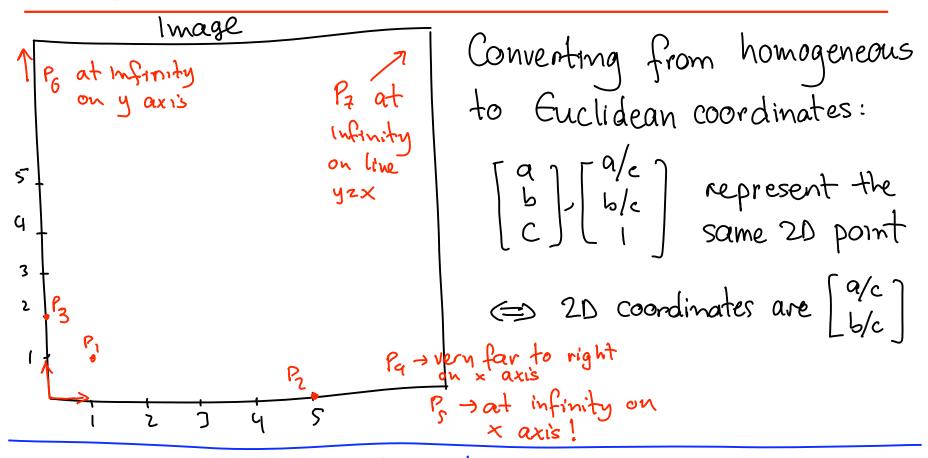
$$\rightleftharpoons$$
 2D coordinates are  $\begin{bmatrix} 9/c \\ b/c \end{bmatrix}$ 

$$V_1 \cong V_2$$

There is a  $0 \neq 0$  such that

$$\begin{bmatrix} y \\ y \end{bmatrix} = 0 \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix}$$

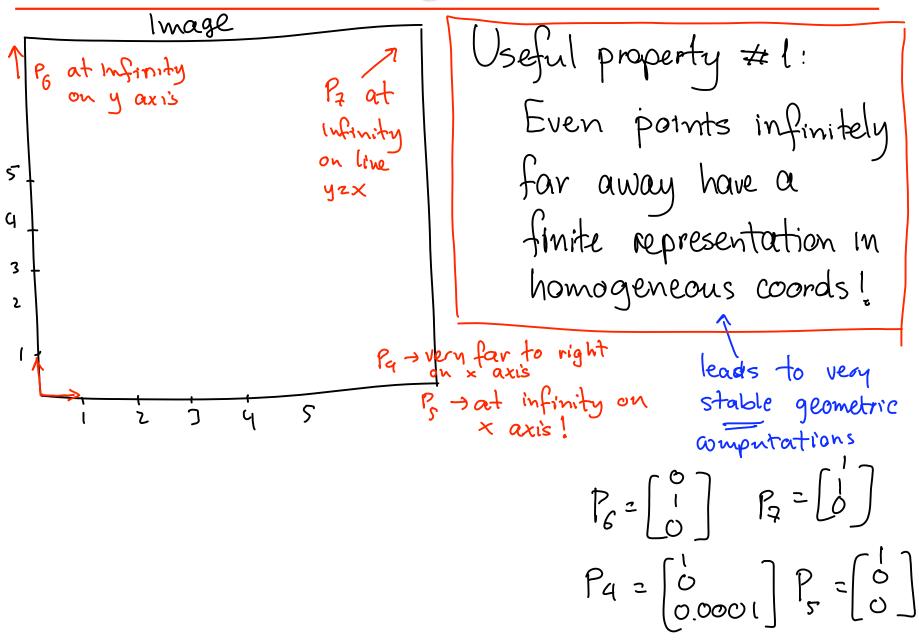
#### **Homogeneous Coordinates** ⇒ **Euclidean Coordinates**



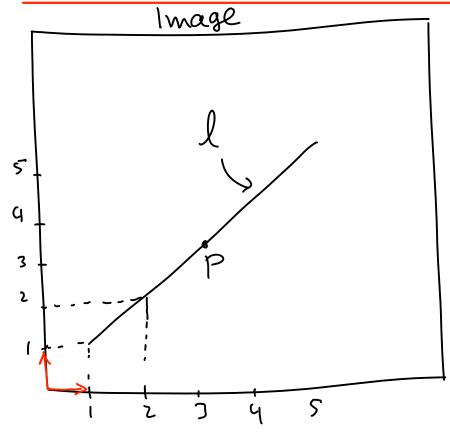
Practice exercise: Plot positions of the following points

$$P_{6} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $P_{7} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 
 $P_{8} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 
 $P_{9} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 
 $P_{1} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ 
 $P_{2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 
 $P_{3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 
 $P_{4} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 
 $P_{4} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 

# Points at $\infty$ in Homogeneous Coordinates



## Line Equations in Homogeneous Coordinates



· The equation of a line

. In homogeneous coordinates

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

or ( P=0

Example: line y=x in homogeneous coords:

line parameters [1-10][x]20
of l

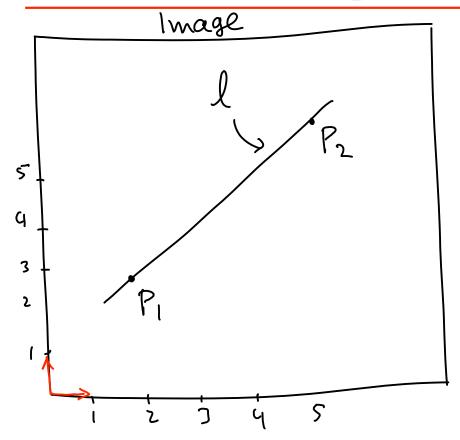
vector holding

line parameters

vector holding

homogeneous asondinates

# The Line Passing Through 2 Points



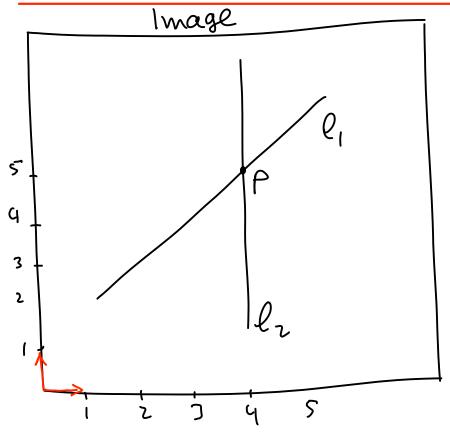
· Calculating the parameters of a line through two points with homogeneous coordinates Pi, Pz

· In homogeneous coordinates

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

- · l must satisfy l'P, 20, l'P2=0
- · taken as 3D vectors, e is perpendicular to both prand Pz = it is along the cross product, PrxPz

#### The Point of Intersection of Two Lines



Calculating the homogeneous coordinates of the intersection of two lines l, lz

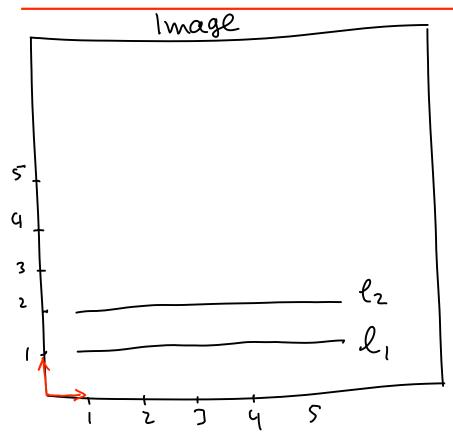
. In homogeneous coordinates

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

- · P must satisfy liP=0, lip=0
- · taken as 3D vectors, P is
  perpendicular to both li and lz

  =) it is along the cross product, lixle

#### **Computing the Intersection of Parallel Lines**

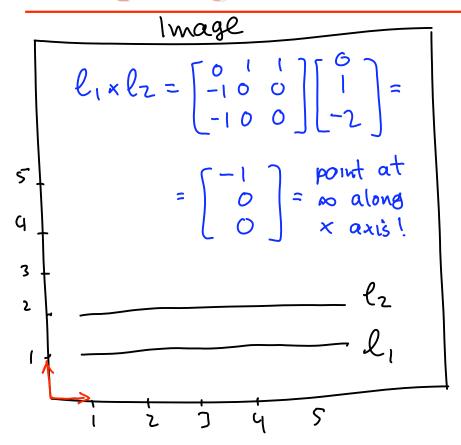


Calculating the homogeneous coordinates of the intersection of two lines l, lz

This calculation works even when li, by are parallel!

(no floating point exceptions or divide-by-zero errors!)

#### **Computing the Intersection of Parallel Lines**

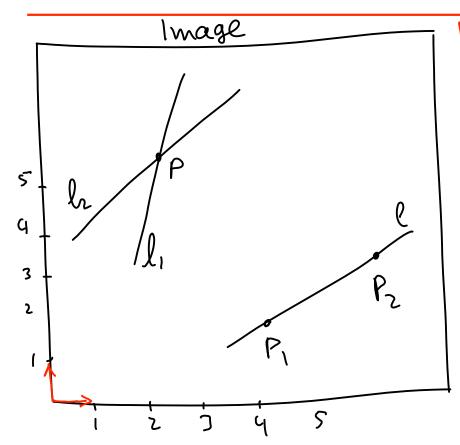


Calculating the homogeneous coordinates of the intersection of two lines li, lz

·Line eq. of  $l_1$  is y=1. Also written as  $0 \cdot x + 1 \cdot y - 1 = 0$ . So  $l_1 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ . Similarly  $l_2 = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$ 

Aside (calculating cross products): If 
$$l_{12}(a,b,c)$$
  
then  $l_{1} \times l_{2} = \begin{bmatrix} 0-c & b \\ c & 0 & -a \end{bmatrix} l_{2}$ 

#### **Lines from Points & Points from Lines**



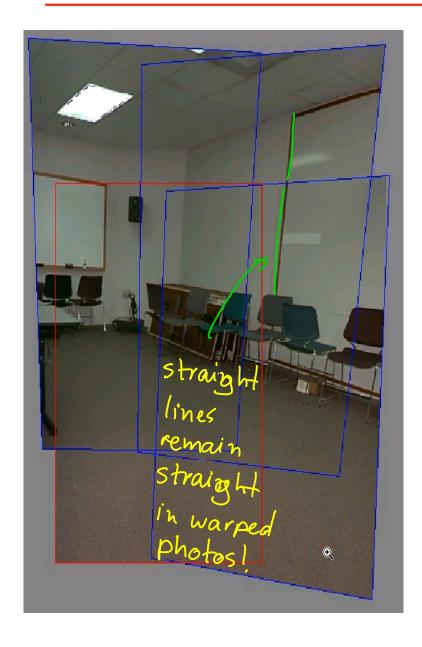
Useful property #2

- · Very simple way of computing & intersecting lines
- · Numerical stability even when result is out so

Line through 2 points

Intersection of 2 lines

#### **Linear Image Warps**

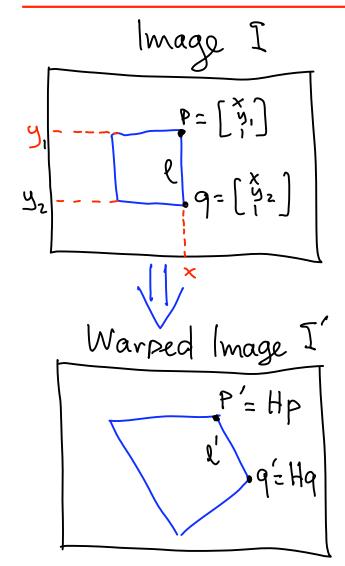


# Basic Insight:

To align multiple photos for mosaicing we must warp then in a way that preserves all lines

(i.e. lines before warping remain lines after warping)

## Linear Image Warps & Homographies



The matrix H is called a Homography

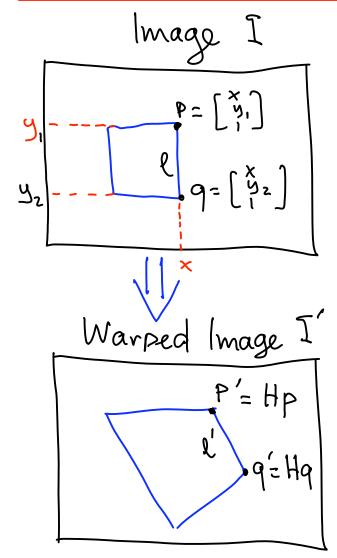
· Definition (Linear Image Warps)

An image warp is called linear if every 2D line I in the original image is transformed into a line I'm the warped image (i.e. the warp preserves all lines in the original photo)

· Property (w/out proof)

Every linear warp can be expressed as a 3x3 months H that transforms homogeneous image coordinates

# Warping Images Using a Homography



The matrix H is called a Homography

· Linear warping equation

$$I(P) = I'(HP)$$

intensity at pixel in source image with homogeneous coordinates p

image with homogeneous coordinates p'z Hp

· Property (w/out proof)

Every linear warp can be expressed as a 3x3 months H that transforms homogeneous image coordinates