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Abstract

Light transport algorithms generate realistic images by simulating the emission and scatter-
ing of light in an artificial environment. Applicationsinclude lighting design, architecture,
and computer animation, whilerelated engineering disciplinesinclude neutron transport and
radiative heat transfer. The main challenge with these algorithmsis the high complexity of
the geometric, scattering, and illumination models that are typically used. In this disserta-
tion, we develop new Monte Carlo techniques that greatly extend the range of input models
for which light transport simulations are practical. Our contributionsinclude new theoreti-
cal models, statistical methods, and rendering algorithms.

We start by developing arigorous theoretical basis for bidirectional light transport al-
gorithms (those that combine direct and adjoint techniques). First, we propose alinear op-
erator formulation that does not depend on any assumptions about the physical validity of
the input scene. We show how to obtain mathematically correct results using a variety of
bidirectional techniques. Next we derive a different formulation, such that for any physi-
cally valid input scene, the transport operators are symmetric. This symmetry isimportant
for both theory and implementations, and is based on a new reciprocity condition that we
derivefor transmissive materials. Finally, we show how light transport can be formulated as
anintegral over aspace of paths. Thisframework allowsnew sampling and integration tech-
niquesto be applied, such as the Metropolis sampling algorithm. We also use this model to
investigate the limitations of unbiased Monte Carlo methods, and to show that certain kinds
of paths cannot be sampled.

Our gdtatistical contributions include a new technique called multiple importance sam-
pling, which can greatly increase the robustness of Monte Carlo integration. It uses more
than one sampling technique to evaluate an integral, and then combines these samplesin a
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way that is provably close to optimal. Thisleads to estimators that have low variance for
a broad class of integrands. We also describe a new variance reduction technique called
efficiency-optimized Russian roulette.

Finally, we link these ideas together to obtain new Monte Carlo light transport algo-
rithms. Bidirectional path tracing uses a family of different path sampling techniques that
generate some path vertices starting from a light source, and some starting from a sensor.
We show that when these techniques are combined using multiple importance sampling, a
largerange of difficult lighting effects can be handled efficiently. The algorithmisunbiased,
handles arbitrary geometry and materials, and is relatively simple to implement.

The second algorithm we describe is Metropolis light transport, inspired by the Me-
tropolis sampling method from computational physics. Paths are generated by following a
random walk through path space, such that the probability density of visiting each path is
proportional to the contribution it makesto the ideal image. The resulting algorithm is un-
biased, uses little storage, handles arbitrary geometry and materials, and can be orders of
magnitude more efficient than previous unbiased approaches. It performs especialy well
on problems that are usually considered difficult, e.g. those involving bright indirect light,
small geometric holes, or glossy surfaces. To our knowledge, thisisthe first application of
the Metropolis method to transport problems of any kind.
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Chapter 1
| ntroduction

The goal of this dissertation is to develop robust, general-purpose algorithms for solving
light transport problems. To meet our goal of generality, we concentrate on Monte Carlo
methods. Currently, only Monte Carlo approaches can handle the wide range of surface ge-
ometries, reflection models, and lighting effectsthat occur inreal environments. By arobust
algorithm, we mean one that produces an acceptably accurate output for as wide arange of
inputs as possible. In this dissertation, we make substantial progress toward these goals,
by developing new theoretical models, statistical methods, and rendering algorithms. We
aso investigate what cannot be achieved — the inherent limitations of certain approaches
to light transport.

Despiteagreat deal of research, current light transport methodsarefairly limitedintheir
capabilities. They are optimized for avery restricted class of input models, and typically re-
quire a huge increase in resources to handle other types of inputs. For example, they often
have problems on scenes with strong indirect lighting, or scenes where most surfaces are
non-diffuse. These are not pathol ogical examples by any means, and in fact thereis consid-
erable interest in solving these cases well (e.g. in architectural applications).

For light transport algorithmsto be widely used, it isimportant to find techniques that
arelessfragile. Rendering algorithms must run within acceptabl e time bounds on real mod-
els, yielding images that are physically plausible and visually pleasing. They must support
complex geometry, materials, and illumination, since these are all important components of
real environments.



2 CHAPTER 1. INTRODUCTION

In our research, we seek to devel op algorithmswith reasonabl e, predictabl e performance
over the widest possible range of real models. Because we have chosen to focus on Monte
Carlo approaches, which support complex geometry and materials with relative ease, our
maininterest isto develop algorithmsthat can handle complex illumination efficiently. This
includes features such as glossy surfaces, concentrated indirect lighting, small geometric
objects, and caustics, all of which cause problems for awide variety of current rendering
algorithms. Our goal isto find general-purpose algorithms that handle these difficult cases
well, without special treatment; in other words, light transport algorithmsthat are robust.

In the following sections, we start with an overview of the light transport problem and
why it isimportant. We also discuss our assumptions about the transport model (discussed
in more detail in Section 1.5). After thisbrief introduction, we summarize the original con-
tributions of this dissertation, and outline its organization.

Intherest of the chapter, we step back to see how theseresultsfitinto alarger context. In
Section 1.4 we give ahigh-level view of the varioustypes of light transport algorithmsused
in graphics, and explain the advantages of unbiased Monte Carlo algorithms. 1n Section 1.5,
we consider the various phenomenathat occur with real light (such as diffraction), and the
reasons why these phenomena are easy or difficult to ssimulate. Finally, in Section 1.6 we
look at problems from physics and engineering that are closely related to light transport.
The viewpoints in these other fields are often quite different from one another, which has
led to avariety of different solution techniques for problemsthat are actually quite similar.

1.1 Thelight transport problem

In computer graphics, the ssmulation of light transport is a tool that helps usto create con-
vincing images of an artificial world. We are given a description of the environment, in-
cluding the geometry and scattering properties of the surfaces. We are aso given a descrip-
tion of the light sources, and the viewpoints from which images should be generated. Light
transport algorithms then simulate the physics of this world, in order to generate redlistic,
accurate images.
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1.1.1 Why light transport isimportant

One of the main goals of light transport algorithms is to increase human efficiency in the
modeling of realistic virtual environments. In computer animations, for example, a great
deal of effort is currently spent on designing realistic lighting. The main problem isthat the
algorithms used for production work (such as scan-line rendering and ray tracing) do not
have the ability to simulate indirect lighting. Thus indirect illumination does not happen
automatically when lights are placed: instead, it must be imitated by carefully placing ad-
ditional lights. If we could find robust light transport algorithms, then the indirect lighting
could be computed automatically, which would make the lighting task far easier.

Another important application of light transport is predictive modeling, where we wish
to predict the appearance of objects before they are built. This idea has obvious uses in
architecture and product design. For these applications, it isimportant that the results be
objectively accurate, as well as visually pleasing.

Finally, better techniques for light transport in graphics may lead to better methods in
physics and engineering, because light transport has a structure that is similar to radiation
and particle transport problems. Section 1.6 discusses these possibilitiesin detail.

If robust light transport algorithms can be found, it seems inevitable that they will be
widely used. This would continue a trend for computer software in general, whereby al-
gorithmsthat are ssmpler or more powerful are eventually favored over those designed for
efficiency in special cases. We feel that the benefits of accurate light transport simulations
will soon outweigh their moderate computational costs.

1.1.2 Assumptions about the transport model

Light transport algorithms do not simulate the behavior of light in every detail, since this
is not necessary for most applications.! From a graphics standpoint, physical opticsis best
thought of as a menu of options. For each application, we decide which optical effects are
important, and choose an algorithm that can simulate them.

1strictly speaking, it is not even possible, since the laws of physics are not completely known. However,
the theory of light and its interaction with matter is one of the best that physics has to offer, and can predict
virtually every observed phenomenon with great accuracy [Feynman 1985]. For the purposes of computer
graphics, we can assume that these laws are completely understood.
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In our work, we generally assume ageometric opticsmodel. Light isemitted, scattered,
and absorbed only at surfaces, and travelsalong straight lines between these surfaces. Thus,
we do not allow participating media such as clouds or smoke, or mediawith a continuously
varying index of refraction (e.g. heated air). We also ignore most properties of light that
depend on awave or quantum model for their explanation (e.g. diffraction or fluorescence).
In particular, we ignore the possibility of interference between light beams, i.e. light is as-
sumed to be perfectly incoherent.

In normal environments, the effects we haveignored are not very significant. Geometric
opticsisadequate to model almost everything we see around us, to ahigh degree of accuracy.
For thisreason, virtually all light transport algorithmsin graphics are based on assumptions
similar to those above. Later in this chapter, we will investigate some of the other choices
that could have been made (see Sections 1.5 and 1.6).

1.2 Summary of original contributions

Our contributionsfall into three areas: new theoretical models, new statistical methods, and
new rendering algorithms. We give an overview of each of these areas, and then discuss our
resultsin detail.

The first part of this dissertation investigates the theory of bidirectional light transport
algorithms. We have developed light transport modelsthat are simple, mathematically pre-
cise, and reveal the structure of the light transport problem in useful ways. In particular we
have studied the rel ationshi ps between different bidirectional solution techniques(e.g. those
based on light and importance) under different assumptions about the physical validity of
the scene model. These new light transport formulations have led directly to new insights
and rendering techniques.

Statistical methods are another vital component of Monte Carlo algorithms. In the pro-
cess of investigating light transport algorithms, we have developed new general-purpose
methods for variance reduction. We isolated these techniques and presented them in an ab-
stract setting, since we believe that they will be useful in other contexts.
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Finally, our main contribution has been the development of robust light transport algo-
rithms. The principa advantage of these algorithmsis their ability to handle complex illu-
mination efficiently. Because of their Monte Carlo nature, they also support complex scat-
tering models and surface geometries. The combination of these properties allows awide
variety of realistic scenesto be rendered in a reasonable, predictable amount of time, even
when there is difficult indirect illumination.

1.2.1 Bidirectional light transport theory in computer graphics

A general linear operator formulation. We present a ssmple light transport model based
on linear operators, extending the work of Arvo [1995]. Thisnew formulation unifieslight
transport, importance transport, and particletracing, and concisely summarizestherel ation-
shipsamong them. We do not make any assumptionsabout the physical validity of the scene
model, which gives our framework aricher structure than previous approaches.

New examples of non-symmetric scattering. Certain materials must be treated specially
inlight transport al gorithms, namely those whose bidirectional scattering distribution func-
tion (BSDF) isnot symmetric. We discusstwo common examples of thisthat have not been
previously recognized. Specifically, we show that non-symmetric scattering occurs when-
ever light isrefracted, and also whenever shading normals are used. We derive the transfor-
mations required to handle these situations correctly in bidirectional algorithms. We also
show that if these new transformations are not used, there can be substantial errors and im-
age artifacts.

A reciprocity principlefor general materials. It iswell known that the reflection of light
from physically valid materials is described by a symmetric BSDF. We derive a general-
ization of this condition that holds for arbitrary materias (i.e. for transmission as well as
reflection). We establish this new reciprocity principle using the laws of thermodynamics,
in particular Kirchhoff’slaws and the principle of detailed balance. We al so discussthe his-
torical originsof reciprocity principles, the subtletiesinvolved in their justification, and the
conditions under which they are valid.
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A self-adjoint operator formulation. Taking advantage of this new reciprocity principle,
we propose thefirst light transport formulation in which the linear operators are self-adjoint
(symmetric) for all physically valid scenes. We show that this simplifies both the theory and
implementation of bidirectional light transport algorithms.

Thepathintegral formulation. Usually thelight transport problemisexpressed intermsof
integral equationsor linear operators. Instead, we show how to formulateit asan integration
problem over aspace of paths. Thisviewpoint allows new solution techniquesto be applied,
such as multiple importance sampling, or the Metropolis sampling algorithm.

Theinherent limitations of unbiased M onte Carlo methods. We show that certain kinds
of transport paths cannot be generated by standard sampling techniques. Thisimplies that
the images generated by unbiased Monte Carlo agorithms (such as path tracing) can be
missing certain lighting effects. We analyze the conditions under which this occurs, and
propose methods for making these path sampling algorithms complete.

1.2.2 General-purpose Monte Carlo techniques

Multiple importance sampling. We describe a new technique for constructing estimators
that are robust, i.e. whose variance is low for a broad class of integrands. It is based on
the idea of using more than one sampling technique to evaluate an integral, where each
technique is designed to sample some feature of the integrand that might otherwise lead to
high variance. Our key results are on how to combine the samples: we present combination
strategiesthat are provably close to optimal, compared to any other unbiased method. This
leadsto low-variance estimatorsthat are useful in avariety of problemsin graphics, includ-
ing distribution ray tracing, multi-pass radiosity algorithms, and bidirectional path tracing.

Efficiency-optimized Russian roulette. Russian roul etteisatechniquethat reducesthe av-
erage cost of sampling, but increases variance. We propose a new optimization that trades
off one property against the other, in order to maximize the efficiency of the resulting es-
timator. Thisis particularly useful in the context of visibility tests, where often there are
many samples that only make a small contribution.
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1.2.3 Robust light transport algorithms

Bidirectional path tracing. We propose a new light transport algorithm based on the idea
of using afamily of different sampling techniques for paths, and then combining them us-
ing multipleimportance sampling. Each path isgenerated by connecting two independently
generated subpaths, one starting from the light sources and the other starting from the eye.
By varying the lengths of the light and eye subpaths, we obtain a family of different sam-
pling techniques. We show that each technique can efficiently sample different kinds of
paths, and that these paths are responsible for different lighting effects in the final image.
By combining samples from all of these techniques using multiple importance sampling, a
wide range of different lighting effects can be handled efficiently.

We describe the complete set of bidirectional estimators, including theimportant special
cases where the light or eye subpath has at most one vertex. We also discuss extensions for
handling ideal specular surfaces, arbitrary path lengths, and efficient visibility testing.

Metropolislight transport. We propose a new Monte Carlo approach to the light transport
problem, inspired by the Metropolis sampling method in computational physics. To render
an image, we generate a sequence of light transport paths by randomly mutating a single
current path (e.g. amutation might add anew vertex to the path). Each mutation is accepted
or rejected with a carefully chosen probability, to ensure that paths are sampled according
to the contribution they make to the desired final image. In thisway we construct arandom
walk over the space of transport paths, such that an unbiased image can be formed by simply
recording the locations of these paths on the image plane.

Thisagorithm is unbiased, handles general geometric and scattering models, useslittle
storage, and can be orders of magnitude more efficient than previous unbiased approaches.
It performs especially well on problems that are usually considered difficult, e.g. those in-
volving bright indirect light, small geometric holes, or glossy surfaces. Furthermore, it is
competitive with previous unbiased algorithms even on scenes with relatively smpleillu-
mination.

The key advantage of the Metropolis approach isthat the path spaceis explored locally,
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by favoring mutations that make small changesto the current path. This has several conse-
guences. First, the average cost per sampleis small (typically only one or two rays). Sec-
ond, once an important path isfound, the nearby paths are explored as well, thusamortizing
the expense of finding such paths over many samples. Third, the mutation set is easily ex-
tended. By constructing mutations that preserve certain properties of the path (e.g. which
light source is used) while changing others, we can exploit various kinds of coherence in
the scene. It is often possible to handle difficult lighting problems efficiently by designing
a specialized mutation in this way.

To our knowledge, thisis the first application of the Metropolis algorithm to transport
problems of any kind.

1.3 Thesisorganization

Thefirst two chapters consist of introductory and background material. In therest of Chap-
ter 1, we discuss the advantages and disadvantages of various types of light transport al-
gorithms, we examine the range of optical phenomenathat can be smulated by such algo-
rithms, and we compare light transport to similar problemsin other fields. In Chapter 2, we
giveanintroductionto Monte Carlointegration, including asurvey of thevariance reduction
techniques that have proven most useful in computer graphics.

The remainder of the dissertation is divided into two parts. In thefirst part, we describe
new theoretical modelsfor bidirectional light transport algorithms. Chapter 3 developsthe
conceptsof radiometry and givesan introduction to the standard light transport equations. It
also describes a new measure-theoretic basis for defining radiometric quantities. Chapter 4
presents a new light transport model based on linear operators. This formulation does not
make any assumptionsabout the physical validity of thescenemodel. Chapter 5investigates
the situations where this model is necessary, i.e. materials whose scattering properties are
not symmetric. We give both physical and non-physical examplesof such materials, and we
derive the techniques needed to handle these materials correctly in bidirectional algorithms.

In Chapter 6, we investigate how the scattering of light from materials is constrained
by the laws of physics, and we derive a new reciprocity principle for general materials. In
Chapter 7, this principleisused to construct the first light transport framework where light,
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importance, and particles obey the same transport equationsfor any physically valid scene.
Finally, Chapter 8 describes the path integral framework, which forms the basis of our new
light transport algorithms.

The second part of the dissertation is more practical in nature. Chapter 9 describesmul-
tiple importance sampling, ageneral tool for reducing the variance of Monte Carlo integra-
tion. In Chapter 10, we apply thistool to the path integral framework, to obtain the bidirec-
tional path tracing algorithm. Finally, Chapter 11 builds upon the path integral framework
in a different way, by combining it with a well-known sampling technique from computa-
tional physics to obtain the Metropolis light transport algorithm.

1.4 Light transport algorithms

Within the field of computer graphics, many different algorithms have been proposed for
solving the light transport problem. In this dissertation, we have chosen to focus on unbi-
ased, view-dependent, Monte Carlo algorithms. We first mention the various kinds of algo-
rithms that have been proposed, and then discuss the choices we have made.

1.4.1 A brief history

Light transport algorithms can be roughly divided into two groups: Monte Carlo methods,
and finite el ement methods.

Monte Carlo methods have been used for neutron transport problems since the 1950's
[Albert 1956], and have been studied extensively there [ Spanier & Gelbard 1969]. In graph-
ics Monte Carlo methods arose independently, starting with Appel [1968] who computed
images using random particle tracing. Whitted [1980] introduced ray tracing (the recursive
evaluation of surface appearance), and al so suggested theideaof randomly perturbing view-
ing rays. Cook et al. [1984] implemented this idea and extended it to random sampling of
light sources, lenses, and time. Thisled to the first complete, unbiased Monte Carlo trans-
port algorithm as proposed by Kajiya [1986], who recognized that the problem could be
written asan integral equation, and could be evaluated by sampling paths. Since then, many
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refinements to his path tracing technique have been adapted from the particle transport lit-
erature [Arvo & Kirk 1990].

There has also been a great deal of work on biased Monte Carlo algorithms, which are
often more efficient than path tracing. These include theirradiance caching algorithm of
Ward et al. [1988], the density estimation method of [Shirley et al. 1995], and the photon
map approach of [Jensen 1995].

Finite element methods for light transport were originally adapted from the radiative
heat transfer literature. Goral et al. [1984] introduced these methods to the graphics com-
munity, where they are typically known asradiosity algorithms. Many improvements have
been made to the basic radiosity method, including substructuring [ Cohen et al. 1986], pro-
gressiverefinement [Cohen et al. 1988], hierarchical basisfunctions[Hanrahan et al. 1991],
importance-driven refinement [Smits et al. 1992], discontinuity meshing [Lischinski et al.
1992], wavelet methods [Gortler et al. 1993], and clustering [Smits et a. 1994]. Other ex-
tensions include the handling of participating media [Rushmeier & Torrance 1987], and fi-
nite element methods for non-diffuse surfaces [Immel et al. 1986, Sillion et al. 1991, Aup-
perle & Hanrahan 1993, Schroder & Hanrahan 1994].

Methods have aso been proposed that combine features of Monte Carlo and finite el-
ement approaches. Typically, these take the form of multi-pass methods, which combine
radiosity and ray tracing passes in order to handle more general scene models [Wallace
et a. 1987, Sillion & Puech 1989, Chen et a. 1991]. Another approach is Monte Carlo
radiosity, where the solution is represented as a linear combination of basis functions (as
with finite element methods), but where the coefficients are estimated by tracing random
light particles [Shirley 1990b, Pattanaik & Mudur 1993, Pattanaik & Mudur 1995].

1.4.2 Monte Carlo vs. deter ministic approaches

At the most basic level, aMonte Carlo agorithm uses random numbers, while a determin-
istic algorithm does not. However, in practice algorithms often use a mixture of techniques,
and are not easily classified. The distinction is further blurred by issues that have nothing
to do with random numbers per se, but that are often associated with one type of algorithm
or the other. We discuss some of these differences below.
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First, Monte Carlo algorithms are usually more general. Thisisavery important issue,
since the biggest source of error in light transport calculations is often the scene model it-
self. A key advantage of Monte Carlo approaches is that virtually any environment can be
modeled accurately. With deterministic algorithms, on the other hand, there are often severe
restrictions on the allowable geometry (e.g. limited to polygons) and materials (e.g. limited
toideal diffusereflectors).? Withtheserestrictions, it is difficult or impossibleto model real
environments. To use these methods, we must usually resort to solving adifferent problem,
by modifying the scene model. Any claims about the solution “accuracy” under these cir-
cumstances are misleading at best.

Monte Carlo and deterministic approaches are also distinguished by how they access
the scene model. Deterministic algorithms usually work with explicit representations of the
scene and its properties (e.g. lists of polygons). Thus, they are strongly affected by the size
and complexity of the scene representation. On the other hand, Monte Carlo algorithmsare
based on sampling, which means that the scene model is accessed through a small set of
gueries (e.g. what isthefirst surface point intersected by agiven ray?). Thisinterface hides
the scene complexity behind alayer of abstraction, and meansthat rendering timesare only
loosely coupled to the scene representation (for example, the scene complexity may affect
the time required for ray casting). In effect, Monte Carlo algorithms can sample the scene
to determine the information they actually need, while most deterministic algorithms are
designed to examine every detail, whether it is relevant or not.

This is an especially important issue for robustness. ideally, the performance of light
transport algorithms should depend only on what the scene represents, rather than the de-
tails of how it is represented. For example, consider a scene illuminated by a square area
light source. If this light source is replaced with a 10 by 10 grid of point sources, then the
visual results will be nearly identical. However, the performance of many light transport
algorithms will be much worse in the second case. Similarly, suppose that we replace the
same source by a pair of fluorescent bulbs covered by a translucent panel. In this case the

2Even when deterministic algorithms support “ general” surfaces and reflection models, their formis often
quite limited (e.g. polynomial functions of a prespecified maximum degree). This demands an extra approx-
imation step when modeling the scene, and often this approximation is very bad and/or expensive in some
cases (e.g. for glossy surfaces).
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entire scene isilluminated indirectly, which will cause problems for many algorithms. Ide-
ally, rendering algorithmsshould not be sensitiveto cosmetic changes of thissort. Thesame
comments apply to geometric complexity: whether an object is represented as a thousand
polygons or amillion Bezier patches, we would like the rendering timesto be as similar as
possible. Monte Carlo algorithms at least have the potential to deal with these situations
effectively, because they are based on sampling.

The distinction between Monte Carlo and deterministic methods is somewhat blurred
by the fact that Monte Carlo agorithms place very weak restrictions on the “randomness’
of the numbersthey use (e.g. often the only requirement isthat these numbers are uniformly
distributed). It isusually possible to design fixed sampling patterns which satisfy the same
restrictions, and this often leads to better performance (these are called quasi-Monte Carlo
methods[Niederreiter 1992]). The principle of Monte Carlo methodsis not that the samples
are truly random, but that random samples could be used in their place.

1.4.3 View-dependent vs. view-independent algorithms

The purpose of al light transport algorithmsin computer graphicsisto produce images, i.e.
rectangular arrays of color values, suitable for display on a monitor or printing device. A
view-independent algorithm is one that computes an intermediate representation of the so-
lution, from which arbitrary views can be generated very quickly. Any other algorithm is
view-dependent, which can mean one of several things. |mportance-driven methods com-
pute a solution that is defined globally, but is optimized for a particular view. That is, the
solutionisdetailed in the visible portions of the scene, but it may be very coarse elsewhere.
Multi-pass methods compute aglobal solutionthat isvalid for al views, but where thefinal
rendering step to obtain an image is relatively slow (e.g. it requires ray tracing). Finaly,
image space methods compute an image directly from the scene model, without trying to
represent the solution everywhere. This category includes Monte Carlo algorithms such as
path tracing.

The distinction between view-dependent and view-independent methods raises a num-
ber of interesting issues. First, these two types of algorithms generally have different pur-
poses. View-dependent methods are useful for animations, where the scene model can
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change substantially from one frame to the next. They are also the natural choice for ren-
dering still images. On the other hand, view-independent solutionsare useful for interactive
applications, such as architectural walkthroughs or computer games.

One problem with “view-independent” algorithms is that they do not make any guar-
antees about the error for any particular view. Ideally, these algorithms would ensure that
every view hasasmall error. Instead, error isusually measured globally (averaged over the
entire scene), which impliesthat local errors can still be large. Thismeansthat if we render
animage of aregion wherethe view-independent solutionisparticularly bad, the resultscan
be completely wrong.

Another problem with view-independent solutionsisthat they are often more expensive
than view-dependent ones, because they compute a representation of the full solution (es-
sentially solving for al views simultaneously). When non-diffuse materials are alowed,
this can be a great deal of extra work compared to computing a single view, since the ap-
pearance of glossy surfaces changes rapidly with the viewpoint.

Even if only diffuse surfaces are allowed, view-dependent algorithms are often more
efficient, since they only need to compute the portion of the solution that we are interested
in. For example, if the scene model iscomplex, and only asmall part of itisvisible, then it
can be much more efficient to compute an image directly. Image space algorithms have the
greatest potential here, since importance-driven methods do not scale as well to complex
scenes (where it can be very expensive to compute even a coarse solution over the whole
domain).

The difference between view-dependent and view-independent algorithms is actually
not as large asit might appear at first, sinceit is often possible to convert a view-dependent
algorithm into view-independent one. The similarity is that both types of algorithms com-
pute a finite set of linear measurements of the global solution. For a view-dependent algo-
rithm, these measurements are pixel values: each pixel is defined by integrating the light
falling on asmall region of theimage plane. Thisisclosely related to the view-independent
approach, where the solution is usually represented as a linear combination of basis func-
tions. View-dependent algorithms can often be adapted to estimate the coefficients of these
basisfunctions, rather than the pixel values of animage, sincethey are both defined aslinear
measurements.
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1.4.4 Unbiased vs. consistent Monte Carlo algorithms

A Monte Carlo estimator computes avalue Fiy (X, ..., Xy) that is supposed to approxi-
mate some unknown quantity Q. Typically, ) isaparameter of aknown density function p,
and the X; are random samplesfrom p. The quantity Fy — () iscalled theerror, and its ex-
pected value 3[Fy] = E[Fx — Q] iscaled thebias. The estimator isunbiasedif 3[Fy] = 0
for all samplesizes N, whileitisconsistent if theerror Fy — () goesto zero with probability
one as N approaches infinity [Kalos & Whitlock 1986].

Intuitively, an unbiased estimator computes the correct answer, on average. A biased
estimator computes the wrong answer, on average. However, if a biased estimator is also
consistent, then the average error can be made arbitrarily small by increasing the sample
size.

We argue that unbiased estimators are essential in order for light transport calculations
to berobust. Thisisanimportant point, since many agorithmsused in graphics are merely
consistent.

The basic reason for preferring unbiased algorithms is that they make it far easier to
estimate the error in a solution. To have any confidence in the computed results, we must
have some estimate of this error. For unbiased algorithms, this simply involves computing
the sample variance, since any error is guaranteed to show up as random variation among
the samples. For algorithmswhich are merely consistent, however, we must also bound the
bias. In genera thisis very difficult to do; we cannot estimate bias by simply drawing a
few more samples. Bias leads to results that are not noisy, but are nevertheless incorrect.
In graphics algorithms, thiserror is often noticeable visually, in the form of discontinuities,
excessive blurring, or objectionable surface shading.

Unbiased algorithms are often used to generate reference images, against which other
rendering algorithms can be compared. Because unbiased methods make strong guaran-
tees about the kinds of errors that can occur, they are useful for detecting and measuring
the artifacts introduced by approximations.® For scenes of realistic complexity, unbiased

3Improvements in unbiased algorithms may also lead to better approximation techniques. (Similarly,
[Arvo 1995] has pointed out that better analytic methods can lead to better Monte Carlo methods.) Our view-
pointisthat one should start with an unbiased algorithm, and adopt approximationsonly wherethey areclearly
necessary (and their effects are well-understood).
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algorithms are the only practical way to generate images that we can confidently say are
correct.

Other things being equal, it is clear that we should prefer an unbiased algorithm. The
conventional wisdom in graphicsisthat unbiased methods are “too expensive’, and that an
acceptableimage can be achieved in lesstime by making approximations. However, thereis
little research to support thisclaim. Whilethere has been agreat deal of work onlight trans-
port algorithmsin graphics, very little of this hasbeen directed toward unbiased algorithms.
In our view, considerably more research is necessary before we can judge their capabilities.
One of the goals of this dissertation isto explore what can and cannot be achieved by unbi-
ased methods, to help resolve these questions.

1.5 Modelsof light and their implicationsfor graphics

Light transport can be studied at many levels of abstraction, ranging from two-dimensional
“flatland radiosity” to quantum simulations. It isuseful to have avariety of these mathemat-
ical models at hand, so that we can select the simplest model that is adequate for each task.
Aswe will see, some optical phenomena have profound implicationsfor algorithm design,
while others can be added quite easily. It is this choice about which effects to simulate that
distinguishes different classes of rendering algorithms, and that separates light transport in
graphics from similar problemsin other fields.

In the following sections, we summarize the important optical effects that occur in the
real world, and discusstheir implicationsfor light transport algorithms. Optical phenomena
are grouped according to the least-complicated optical theory that can explain them (geo-
metric, wave, or quantum optics). Each of these theories explains different aspects of the
observed behavior of light.

1.5.1 Geometric optics

Geometric opticsis essentially the particle theory of light. Thismodel can describe awide
range of optical phenomena, including emission, diffuse and specular reflection, refraction,
and absorption. This covers most of what we see in everyday environments, which iswhy
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so many rendering al gorithms are based on geometric optics.

However, full geometric opticsistoo complex for most rendering applications. In com-
puter graphics we usually make more restrictive assumptions, to obtain smpler and faster
light transport algorithms.

For example, participating media are often ignored. In general, light can be emitted,
scattered, or absorbed in a three-dimensional medium, such as fog or gelatin. By ignoring
these possibilities, al scattering isassumed to happen at surfaces (which are infinitely thin).
Thisaso impliesthat no energy islost as light travels between surfaces.

In principle, it iseasy to include participating mediain Monte Carlo algorithms, by sim-
ply extending the ray casting procedure to sample the volume scattering and absorption
aong the ray [Rushmeier 1988]. The main effort required is the implementation of addi-
tional geometric primitives. Considerably more work is necessary to implement participat-
ing mediawith finite element approaches, since three-dimensional volumes must be meshed
and subdivided, and the interaction with two-dimensional elements must be properly ac-
counted for [Rushmeier & Torrance 1987]. With either approach, it is easier to handle me-
diathat only absorb light (no emission or scattering), since this can be handled in the same
way as surface occlusion (these mediablock afraction of the light traveling on a given ray,
rather than all or none).

Geometric optics also alows media that have a continuously varying refractive index.
This situation occurs when air is heated, for example, leading to shimmering “mirage” ef-
fects. Intheory, thiseffect makesthe light transport problem much more complicated, since
beams of light no longer travel in straight lines between surfaces. Instead, they follow
curved trajectories described by the eiconal equation [Born & Wolf 1986], which must be
integrated in small stepsto determine the path of abeam. To check for “visibility” between
two points(i.e. the existence of an optical path that connectsthem), we must solveadifficult
optimization problem. Some of these problems can be alleviated by making approximations
[Stam & Languenou 1996]. However, since this effect is not important for most graphics
models, it isusually just ignored.

Another common assumption isthat light is monochromatic (i.e. that it hasasingle fre-
guency). Thisisusually just a convenience, to simplify the description of algorithms. It
isusually straightforward to deal with polychromatic light, by calculating with full spectra
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rather than monochromatic intensities. Operations on spectra are usually handled through
a generic interface, so that different spectral representations can be substituted easily. A
large number of representations have been proposed, with various tradeoffs between accu-
racy and expense[Hall 1989, Peercy 1993]. Sometimes, itisargued that polychromatic light
can be handled by ssimply repeating a monochromatic algorithm at different wavelengths.
However, thisisrarely agood idea. Many calculations must be repeated separately at each
wavelength, and any variations between the results at different wavelengths (for example,
the mesh resolution or the location of random samples) can lead to objectionable color ar-
tifacts.

Similarly, transmission through surfaces is often disallowed. Again, thisis usually just
a convenience in describing algorithms. Transmission can be handled just like reflection,
except that light is scattered to the opposite side of the surface. However, some care must
be taken when the refractive index changes from one side to the other, since the radiance of
alight beam changes according to the square of refractive index (see Chapter 5). Also, the
index of refraction may depend on the frequency of theincident light, leading to the familiar
rainbow effect known as dispersion.

For some algorithms, ideal specular scattering is not supported. This includes reflec-
tion by mirrors, and refraction between water and air. Thisis mainly a problem for algo-
rithmsthat require an explicit representation of the scattering properties of asurface (e.g. as
a polynomial function). In these representations, mirror-like surfaces correspond to Dirac
delta distributions, which are not easily handled. If specular surfaces are supported by
these algorithms at all, it is often only large, flat mirrors, which can be handled by reflect-
ing the environment around the plane of the mirror, and treating the mirror as a window
[Rushmeier 1986, Wallace et al. 1987, Rushmeier & Torrance 1990]. Itisrelatively easy to
support specular surfaces in Monte Carlo algorithms, although this may add considerable
variance to the cal culations (see Chapter 8).

Finally, some algorithms support only ideal diffuse reflection (or transmission). A dif-
fuse surface appears equally bright from all viewing directions; the direction in which a
photon is scattered does not depend on how it arrived. This is a serious limitation, since
real scenes contain awide variety of materials, and it is often the variation in their scatter-
ing properties that makes an image look interesting or real.
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The main advantage of diffuse surfaces isthat their appearance depends only on posi-
tion, rather than position and direction. This reduces a four-dimensional problem to atwo-
dimensional one, which can obviously lead to simpler algorithms. However, it is usually
quitedifficult to convert an algorithm the other way, from diffuse surfacesto general materi-
als. Someagorithmshandle surfacesthat are alinear combination of ideal diffuseand ideal
specular, but thisisnot at all the same as supporting general scattering functions. There are
al so some algorithmswhich appear to be general, but where in fact only diffuse surfacesare
handled efficiently (e.g. other materials are handled via distribution ray tracing). Claims of
generality for these algorithms are misleading, since they do not perform well unless most
surfaces are diffuse. For testing generality, it is perfectly reasonable to use a scene withno
ideal diffuse materials, since these materials do not exist in the real world.

1.5.2 Waveoptics

Light can also be regarded as an electromagnetic wave [Born & Wolf 1986]. This model
explains al of the phenomena handled by geometric optics, plus a few more. It is not al-
ways necessary to simulate the wave model of light to obtain wave effects. For example,
polarization can be added quite easily to rendering systems based on geometric optics. In
fact, the models of light transport in graphics often combine features from all three optical
theories.

One effect exhibited by waves is diffraction, which causes light to “bend” dlightly
around obstacles. While diffraction is rarely noticeable at human scales, it cannot be ne-
glected for small objects (e.g. those which are less than ten wavelengths across). Thisis
an important issue in predicting reflection from rough surfaces, for example by ssimulating
light transport at the microgeometry level [He et a. 1991]. However, it isdifficult to incor-
porate diffraction into most light transport algorithms, since it viol ates the assumption that
light travelsin straight lines.

Another important wave effect is coherence. Coherence is a relationship between two
beams of light, which measures the average correlation between their phases [Born &
Wolf 1986]. So far, we have been assuming that light waves are perfectly incoherent, mean-
ing that any two such waves have no phase correlation. The most important property of
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incoherent beams s that when they are superposed, their intensities add linearly (wherein-
tensity means the mean squared amplitude). This agrees with our usual intuition, e.g. two
100 watt bulbs are twice as bright as one 100 watt bulb.

When two beams are partially or fully coherent, their superposition results in interfer-
ence. If there is positive correlation between their phases, it is called constructive interfer-
ence, otherwise it is destructive interference. When two coherent beams of equal intensity
are combined, theresulting intensity can be anywherefrom zero tofour timesasgreat* This
effect isresponsible for the light and dark bands in the classic “two-dlit experiment” [Born
& Wolf 1986].

Interference is important when modeling very small features, such as thin coatings or
soap bubbles [Gondek et a. 1994]. Light is reflected back and forth inside the coating, so
that the incident light wave is superposed on itself. This leads to interference, since any
light beam is perfectly coherent with itself, and there is still partial coherence between two
points on the beam that are several wavelengths apart. This applies even to beams from
“incoherent” sources, such as incandescent light bulbs.®

Interference can beincluded in light transport al gorithms by keeping track of the phases
of al light beams [Gondek et al. 1994]. Thisrequires keeping track of the optical length of
the path traveled by each beam from the same source, including any coherent reflections or
refractions. However, for most applications this additional expenseis not justified.

Coherence is also related to polarization. Light is a transverse electromagnetic wave,
which can be represented as point moving in atwo-dimensional plane (this point isthe tip
of the electric vector, which is always contained in the plane perpendicular to the direction
of propagation). Equivalently, we can regard light as the superposition of two independent
waves, vibrating at right angles to each other. (Project the function onto two perpendicular
vectors, such asthe - and y-axes.) Just aswith any waves, these two waves can be partially
or fully coherent, or have different amplitudes. If any of these things are true, we say the
light is polarized.

4Thisis not an example of non-linear optics (discussed in the next section), since the waves themselves
add linearly. However, awave with double the amplitude correspondsto afourfold increase in intensity.

SNote that the assumption of perfect incoherence in Section 1.1.2 is simply a mathematical abstraction;
perfectly incoherent light does not exist in the real world.
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Polarization isimportant for modeling materials such as water or glass, where the scat-
tering properties depend strongly on how the incident light is polarized. Another effect that
depends on polarization isbirefringence (also known as doublerefraction) [Drude 1900]. It
occursin certain kinds of crystals, where the refractive index is different for light polarized
parallel or perpendicular to the crystal surface. This has the effect of splitting an incident
beam of light into two beams with opposite polarizations, which are refracted in different
directions.

Polarization is quite easy to include in most light transport algorithms; the effort issim-
ilar to that of adopting a different spectral representation. There are two common repre-
sentations of polarization: the Jones matrix (appropriate for monochromatic light, whichis
aways completely polarized), and the Stokes matrix (which applies to partially polarized,
perfectly incoherent light beams). The general problem of superimposing two partially co-
herent, partially polarized beams is more difficult; there are no simple representations in
general, other than working with an explicit description of the waveforms [Perina 1985].

1.5.3 Quantum optics

Quantum physics offers the most detailed, accurate model of the behavior of light.® Some
of these effects are not explained by the geometric or wave theories, but are still relevant to
computer graphics.

One of these effects is fluorescence. This occurs when photons are absorbed by a
molecule, and then a new photon is emitted at a different wavelength. This effect is actu-
aly quite common in the real world. For example, fluorescent dyes are used commercially
to obtain brighter colors; thisis why clothing often “glows in the dark” under ultraviolet
lights.

Fluorescenceis quite easy to add to rendering systems|[Glassner 1994], by allowing en-
ergy at different wavelengthsto interact (in alinear way). If light spectra are represented as
vectors (with one coefficient per wavelength), then scattering from a surface can be repre-
sented as amatrix. When there is no fluorescence, this matrix is diagonal; otherwise, some

SFeynman [1985] has written a very readable account of the basics of this theory, and makes fascinating
connections between the macroscopic and quantum behaviors of light.
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of the off-diagonal entries will be nonzero.’

Another interesting effect is phosphorescence [Glassner 1994]. Here photons are ab-
sorbed, and re-emitted at alater time (usually at a different wavelength). This effect is not
important for most computer graphics applications; however, there are similar problemsin
other fields where this kind of time-delay reaction is crucial (e.g. the decay of radioactive
elements). The implementation of phosphorescence requires that the rendering algorithm
integrate the incident light over time, since the current emission of a phosphorescent sur-
face depends on its exposure in the past.

All of the effects we have described so far belong tolinear optics. Consider an arbitrary
optical system, which takes one light beam as input, and produces another light beam as
output. Theoptical systemislinear if the output waveisalinear function of theinput wave,
e.g. if we superpose two input waves, the output must be the sum of the outputs we would
get if each wave were used alone. This property holdsfor practically every optical system.

However, with the introduction of lasers, non-linear effects have been discovered. For
example, when high-intensity laser light passes through certain crystals, the light that exits
the crystal is twice the frequency of the light which entersit. Thisis known as frequency
doubling [Bloembergen 1996]. It does not happen with low-intensity light, so thisis an
example of non-linearity.®

There are many other effects whose explanation rests on quantum physics. For example,
the photoel ectric effect, or the observed spectral distribution of blackbody radiation. Lasers
a so depend on quantum physicsfor their explanation. However, these effects areirrelevant
for computer graphics. We do not need to simulate blackbody radiation from first principles
toincludeit in our scenemodels. Similarly, special and general relativity can beignored for
all practical purposes (e.g. the bending of light in a gravitational field).

"Glassner [1994] points out that for real materials, the matrix is often triangular. Photons often migrate
from higher to lower energies during scattering, but rarely movein the other direction. Thisiswhy clothesdo
not “glow in the dark” when exposed to heat lamps.

8Consider abeam of light that is so intense that it heats the receiving surface, until it beginsto glow. This
effectisnon-linear (since with adim beam of light, the surfacewill not glow at all). However, thisis not what
ismeant by non-linear optics. The surface temperature depends on the integral of the incident light over time
(unlike the frequency doubling example). At each instant in time, the system is still linear, since the surface
emission does not depend on the current intensity of the incident light.
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1.6 Related problemsfrom other fields

Light transport issimilar to avariety of problemsin physicsand engineering. It isimportant
to have aclear understanding of the connections between these problems, since many of the
techniques used in graphicswerefirst discovered in other areas. Thereisstill much to learn
from other scientific fields, and conversely these fields also have something to learn from
computer graphics.

However, the underlying assumptionsin other fields are often very different from those
in graphics. This can make it difficult to transfer results from one field to another. In fact,
some aspects of the light transport problem seem to be unique to computer graphics.

Oneimportant differenceisthe representation of the final output. In computer graphics,
the final output always consists of images, and any other representations of the solution are
just intermediate steps toward this goal. In physics and engineering, images are not impor-
tant (except possibly as a visualization aid). Instead, the objective is to compute a set of
numerical measurements, or even better, afunctional representation of the solution over its
entiredomain. A full representation of the solution makesit easier to locate design problems
(e.g. aleak through the shielding of a nuclear reactor).

Another difference is the way in which the quality of a solution is measured. In other
fields, the goal isto compute resultsthat are objectively accurate, according to standard nu-
merical error metrics (e.g. the L, norm). In computer graphics, on the other hand, the ulti-
mate error metricsare perceptual (and are thus not easy to define explicitly). Visua artifacts
such as discontinuities or Mach bands are very objectionablein graphics, yet they are per-
fectly acceptable in heat transfer or nuclear engineering problems (as long as the numerical
error is satisfactory). Because of this, popular methods in other fields are not always well-
suited for graphics applications. In fact, perceptual error has been one of the main forces
driving further research on light transport algorithms.

In the remainder of this section, we discuss the light transport problem as it relates to
nuclear engineering, radiative heat transfer cal culations, radar and acoustic wave scattering,
and many-body problems.
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1.6.1 Neutron transport

One of the first applications of Monte Carlo methods was the design of nuclear devices.
Early Monte Carlo pioneers, such as von Neumann and Ulam, discovered techniques in
this context that have now found much wider applicability [Ulam 1987]. Neutron transport
problems are natural candidates for Monte Carlo methods, because of the relatively large
number of dimensions involved (position, direction, energy, time), and the complexity of
the interactions with atomic nuclei.

Light transport has much in common with neutron transport. They are governed by the
same underlying equation (the Boltzmann equation), which describes the transport of virtu-
ally any kind of particlesthat do not interact with each other.® This equation is one of the
central aspects of transport theory, which studies the transport of generic particles without
regard for their physical meaning [Duderstadt & Martin 1979].

However, neutron and light transport differ substantially in emphasis. For example, the
simulation of participating mediais not important for most applicationsin computer graph-
ics, whereas it is absolutely essential for neutron transport. Neutrons penetrate much far-
ther into solid objects than photons, so that volume scattering (and volume emission) are
the dominant effects. In fact, surface scattering and emission are often completely ignored
in these simulations [Spanier & Gelbard 1969].

Another important difference isthe interaction between particles at different energy lev-
els. In graphics, fluorescence and phosphorescence are relatively insignificant effects. This
means that to a good approximation, photon scattering is elastic (its wavelength does not
change) and instantaneous (there is no significant delay between the arrival and departure
of the photon). On the other hand, the scattering of neutronsisinelastic: they generally gain
or lose some energy upon collision with a nucleus (an effect similar to fluorescence). Like-
wise, thereisa small delay between the arrival of a neutron, and the scattering or emission
of other neutrons (similar to phosphorescence). These delays can substantially affect the
outcome of the calculation, and cannot be ignored.

9The Boltzmann equation does not mode! particletransport perfectly, sinceit is based on assumptionssim-
ilar to those of geometric optics. For example, it ignores wave effects such as diffraction.
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A third mgjor differenceis the existence of conservation principles. In graphics, we of-
ten rely on conservation of energy: the light scattered from a surface is no greater than the
light incident upon it. With neutrons, on the other hand, it is often the objective to avoid
thistype of conservation. It is possible for a nuclear reaction to be critical or supercritical,
in which case the number of neutrons in the environment increases quickly with time. In
terms of individual collision events, a single incident neutron may cause several new neu-
tronsto be emitted (by splitting the atomic nucleus). Other kinds of particles may be emitted
aswell, such as high-energy photons (gammarays), and it is often necessary to track these
particles as well.

Despite these differences, many techniques from the neutron transport literature can be
adapted to computer graphics. Thisis usually quite easy, since light transport is a simpler
problem.

There is also some interest in transport algorithms for charged particles, such as elec-
trons. However, an important property of charged particles is that they interact with each
other at a distance, by means of the electromagnetic field. Similarly, the path of a charged
particle is influenced by fixed electric and magnetic fields, so that these particles follow
curved traectories (similar to photons passing through a medium with a continuously vary-
ing refractive index). These features give the transport of charged particles a considerably
different flavor, and most light transport algorithms cannot easily be adapted to this purpose.

1.6.2 Heat transfer

Radiative heat transfer is also very similar to light transport. In fact, the only difference
is that the photons in heat transfer have longer wavelengths (in the infrared portion of the
spectrum). Aswith neutron transport, however, different aspects of the problem are empha-
Sized.

First, we review the three mechanisms of heat transfer: conduction, convection, and ra-
diation. With conduction, energy is exchanged between adjacent vibrating atoms, as they
bump into each other. This causes aslow migration of heat away from “hot spots’ (e.g. this
iswhat causes the handle of a frying pan to become hot). With convection, heat is trans-
ferred by the large-scale movements of atoms (e.g. a draft of hot air). Finally, heat can be
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transferred by the radiation of photons, which carry energy amost instantaneously across
large distances (e.g. the heat that isfelt when standing near acampfire). It isthislast mech-
anism that is similar to light transport.

This brings us to the first important difference from light transport, namely that ra-
diation is only one aspect of heat transfer problem. For many applications, conduction
and convection are at least as important. (One indication of this is that the heat equa-
tion in the applied mathematics and engineering literature often refers only to conduction
[Gustafson 1987, Hughes 1987].) In theory, conduction and convection can aso affect light
transport calculations, if portions of the surrounding environment are so hot that they begin
to glow (i.e. emit photonsin the visible wavelengths). However, this definitely falls outside
the traditional realm of computer graphics.

A second difference is that heat transfer problems are often non-linear. For example,
the spectrum of radiation emitted by a hot surface depends on the fourth power of its tem-
perature, and convection is also affected by temperature in complex ways. However, these
non-linearities are irrelevant for our purposes, because theradiative aspect of heat transfer
isalways alinear problem. Temperature changes due to conduction, convection, and even
radiation are extremely slow compared to the speed of light, so that the system is effectively
in radiative equilibrium at all times.

Unlike neutron transport, most heat transfer algorithms are based on the finite element
method.!® There are several reasonsfor this. First, finite element methods compute arepre-
sentation of the entire solution (rather than isolated measurements), which makes it easier
to locate design problems. Second, afull solution also makesit easier to include the effects
of conduction and convection, and to follow the evolution of the system over time. Finaly,
finite element methods are astandard tool in civil and mechanical engineering, so that it was
natural to extend these methods to heat transfer problems.

The heat transfer literature has thus inspired finite element approachesto light transport,
just as neutron transport algorithms have inspired Monte Carlo work.

10Technically, these are often boundary element methods [Siegel & Howell 1992], where the solution is
represented only on the boundary of the domain rather than itsinterior. Thisisthe preferred representationin
the absence of convection.
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1.6.3 Radar and acoustics problems

The scattering of radio waves is another problem that is similar to light transport. Radio
waves are simply another part of the el ectromagnetic spectrum, but with much longer wave-
lengthsthan visiblelight or radiant heat. Consequently, the wave nature of €lectromagnetic
radiation becomesimportant: effects such asdiffraction and interference cannot beignored.
For this reason, the mathematical models and algorithms for these problems are based on
the wave mode of light, rather than geometric optics. Thisyields atotally different set of
algorithms and insights.

Radio scattering problems arise in the design of objects that are difficult for radar sys-
tems to detect (e.g. military aircraft). Similar problems arise in the design of auditoriums
and concert halls, whereit isimportant to predict the scattering of sound waves. The wave-
lengths of audible sounds are comparable to the dimensions of ordinary objects (ranging
approximately from one centimeter to ten meters), so that wave effects cannot be neglected.

At their most basic level, these problemsinvolve solving thewave equation, apartial dif-
ferential equation that describes how waves propagate with time [Strang 1986, Gustafson
1987, Zauderer 1989]. Thisformulation is extremely general, but for realistic problems it
is also difficult and expensive to solve. The problem can be greatly simplified by assum-
ing that all radio sources have a single frequency, and that their intensity does not change
with time. This is called the time-harmonic version of the problem. Such a system will
rapidly converge to an equilibrium state, where the intensity of the electromagnetic field at
each point isasinusoidal function of time. The amplitude and phase of the electromagnetic
vibration at each point can be represented by a complex number.

Mathematically, the reduced problem is described by the Helmholtz equation, also
known as the reduced wave equation [Zauderer 1989]. Thisis a partial differential equa-
tion, like the wave equation, except that there is no time dependence (since we are solving
for an equilibrium state). Formally, this means that the Helmholtz equation is an élliptic
problem, rather than a hyperbolic problem like the wave equation. Elliptic problems re-
quire an entirely different set of solution techniquesthan hyperbolic ones, and are generally
easier to solve.

Methods for the scattering of radio and sound waves can be applied directly to the light
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transport problem; the restriction to asingle frequency meansthat only monochromatic light
can be handled (or that each frequency must be simulated independently). Thisformulation
correctly handles diffraction and interference, as well as all of the phenomena handled by
geometric optics. This could lead to interesting solution techniques for graphics problems
where the wave nature of light isimportant.

1.6.4 Many-body problems

Efficient algorithmsfor many-body problemsare an important recent influence on computer
graphics. The simplest version of this problem involves a set of NV particles, each with a
different mass. The problem isto determine the gravitational force exerted on each particle
by the others. This can be used to ssimulate the motion of the particles, by integrating their
velocity and position over time. The problem can be extended to charged particles, and also
to bodies with more complex shapes.

The obviousalgorithm for this problemisto computethe O(N?) pairsof forces, and add
them together to find the net force acting on each particle. However, recently several ago-
rithms have been proposed that are far more efficient. These algorithms have complexities
of O(N log N) [Barnes& Hut 1986] or even O (V) [Greengard & Rokhlin 1987, Greengard
1988]. Thebasicideaisthat distant particles can be grouped together, replacing the calcula-
tionsfor many individual particles with a single computation for the group. Because of the
O(1/r?) faloff of gravitational and electric force, these approximations are possible with-
out significant loss of accuracy. Particles are organized into a hierarchical data structure, so
that nearby particles can be processed in small groups, while distant particles are handled
in large groups.

These techniques were the inspiration for hierarchical light transport algorithms
[Hanrahan et a. 1991]. It is easy to see that there is some connection; for example, the
intensity of apoint light source obeysthe same kind of O(1/r?) falloff law as gravity does.
In fact, if we ssimply replace point masses by point light sources, many-body algorithms
can be used to efficiently compute the fluence rate due to these light sources at many points
simultaneously. (The fluence rate at a point in space isthe integral of the incident radiance
over al directions, i.e. the total power per unit cross-sectional area that would be received
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by atiny spherical light sensor [American National Standards Institute 1986].)

However, computing the fluence at isolated points is not particularly useful for making
images. There are substantial differences between light transport and the many-body prob-
lem, such asocclusion. Gravity passesthroughwalls, whilelight doesnot. Furthermore, the
gravitational force is afunction only of position, while light intensity (radiance) is a func-
tion of position and direction. (Thisis because a point mass creates the same gravitationa
force in al directions, while a point light source can radiate different amounts of light in
different directions.)

These differences make light transport considerably more complex than the many-body
problem, and help to explain why hierarchical agorithms in graphics have not been able
to make the same accuracy and performance guarantees that are available for many-body
algorithms. The results for many-body algorithms are quite impressive: solutions can be
computed with any accuracies comparable to the machine's floating-point resolution, with
atime complexity of O(N) [Greengard 1988].2 It is doubtful that similar results will ever
be obtained for realistic light transport problems.

"Note that although the force-calculation component of the Greengard algorithm is O(N), there is also
a tree building component that can take O(N log V) time. Similarly, the complexity of the Barnes & Hut
[1986] algorithm can be significantly worse than O(N log N') when the particle distribution is non-uniform
[Anderson 1996].



Chapter 2
Monte Carlo Integration

Thischapter givesan introductionto Monte Carlo integration. Themain goalsareto review
some basic concepts of probability theory, to define the notation and terminology that we
will be using, and to summarize the variance reduction techniques that have proven most
useful in computer graphics.

Good references on Monte Carlo methodsinclude Kalos & Whitlock [1986], Hammer-
sley & Handscomb [1964], and Rubinstein [1981]. Sobol’ [1994] is a good starting point
for those with little background in probability and statistics. Spanier & Gelbard [1969] is
the classic reference for Monte Carlo applications to neutron transport problems; Lewis &
Miller [1984] is a good source of background information in this area. For quasi-Monte
Carlo methods, see Niederreiter [1992], Beck & Chen [1987], and Kuipers & Niederreiter
[1974].

2.1 A brief history

Monte Carlo methods originated at the Los Alamos National Laboratory in the early years
after World War 11. The first electronic computer in the United States had just been com-
pleted (the ENIAC), and the scientists at Los Alamos were considering how to useit for the
design of thermonuclear weapons (the H-bomb). In late 1946 Stanislaw Ulam suggested
the use of random sampling to simulate the flight paths of neutrons, and John von Neumann

29
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developed adetailed proposal in early 1947. This led to small-scale simulations whose re-
sults were indispensable in completing the project. Metropolis & Ulam [1949] published a
paper in 1949 describing their ideas, which sparked to agreat deal of research inthe 1950's
[Meyer 1956]. The name of the Monte Carlo method comes from acity in Monaco, famous
for its casinos (as suggested by Nick Metropolis, another Monte Carlo pioneer).

In isolated instances, random sampling had been used much earlier to solve numerical
problems[Kalos & Whitlock 1986]. For example, in 1777 the Comte de Buffon performed
an experiment in which aneedle was dropped many timesonto aboard marked with equidis-
tant parallel lines. Letting L be the length of the needle and d > L be the distance between
the lines, he showed that the probability of the needleintersecting alineis

2L
b=
Many years|ater, Laplace pointed out that this could be used as a crude means of estimating

thevalue of .

Similarly, Lord Kelvin used what we would now call a Monte Carlo method to study
some aspects of the kinetic theory of gases. His random number generator consisted of
drawing slips of paper out of aglassjar. The possibility of bias was a significant concern;
he worried that the papers might not be mixed well enough due to static electricity. Another
early Monte Carlo experimenter was Student (an aliasfor W. S. Gosset), who used random
sampling as an aid to guessing the form of hisfamous ¢-distribution.

An excellent reference on the origins of Monte Carlo methodsisthe special issue of Los
Alamos Science published in memory of Stanislaw Ulam [Ulam 1987]. The books by Ka-
los & Whitlock [1986] and Hammersley & Handscomb [1964] also contain brief histories,
including information on the pre-war random sampling experiments described above.

2.2 Quadraturerulesfor numerical integration

In this section we explain why standard numerical integration techniques do not work very
well on high-dimensional domains, especially when the integrand is not smooth.
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Consider an integral of the form

1= [ f@)du(), (2.1)

where ) is the domain of integration, / : 2 — IR isareal-valued function, and x is a
measure function on 2.1 For now, let the domain be the s-dimensional unit hypercube,

Q = [0,1]°,
and let the measure function be
dp(z) = dat---da®,

where 27 denotes the j-th component of the point = = (2, ..., 2°) € [0, 1]°.
Integrals of this sort are often approximated using aquadrature rule, which issimply a

sum of the form N

I= > wfx) (22)

=1

where the weights w; and sample locations «; are determined in advance. Common exam-
ples of one-dimensional quadrature rulesinclude the Newton-Cotes rules (i.e. the midpoint
rule, thetrapezoid rule, Simpson’srule, and so on), and the Gauss-Legendrerules(see Davis
& Rabinowitz [1984] for further details). The n-point forms of these rules typically ob-
tain a convergence rate of O(n~") for some integer » > 1, provided that the integrand has
sufficiently many continuous derivatives. For example, the error using Simpson’srule is
O(n~*), providedthat f hasat |east four continuousderivatives[Davis& Rabinowitz 1984].

Although these quadrature rulestypically work very well for one-dimensional integrals,
problems occur when extending them to higher dimensions. For example, a common ap-
proach is to use tensor product rules of the form

N n n n
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where s isthe dimension, and the w; and x; are the weights and sample locationsfor agiven

IFamiliar examples of measuresinclude length, surface area, volume, and solid angle; see Halmos [1950]
for an introduction to measure theory.
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one-dimensional rule. This method has the same convergence rate as the one-dimensional
rule on which it is based (let this be O(n™")), however it uses a much larger number of
sample points (namely N = n®). Thusin terms of the total number of samples, the con-
vergence rate is only O(N~"/¢). This implies that the efficiency of tensor product rules
diminishes rapidly with dimension, a fact that is often called the curse of dimensionality
[Niederreiter 1992, p. 2].

The convergence rate can be increased by using a one-dimensional rule with a larger
value of r, however this has two problems. First, the total number of samples N = n?
can become impractical in high dimensions, since n increases linearly with » (specificaly,
n > r/2). For example, two-point Guass quadrature requires at least 2° samples, while
Simpson’srule requires at least 3° samples. Second, faster convergence rates require more
smoothness in the integrand. For example, if the function f has a discontinuity, then the
convergence rate of any one-dimensional quadrature ruleis at best O(n ') (assuming that
the location of the discontinuity is not known in advance), so that the corresponding tensor
product rule converges at a rate no better than O(N /%),

Of course, not all multidimensional integration rules take the form of tensor products.
However, there is an important result which limits the convergence rate of any determinis-
tic quadraturerule, called Bakhvalov's theorem[Davis & Rabinowitz 1984, p. 354]. Essen-
tially, it says that given any s-dimensional quadrature rule, there is function f with » con-
tinuous and bounded derivatives, for which the error is proportional to N~"/°. Specificaly,
let C';, denote the set of functions f : [0, 1]* — IR such that

af
a(xl)al .. .a(xs)as

<M

foral a,...,a, with > a; = r, recaling that 27 denotes the j-th coordinate of the vector

x. Now consider any /N-point quadrature rule
N
I(f) = Zwif(xi)

=1

where each z; isapointin [0, 1)*, and suppose that we wish to approximate some integral
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Then according to Bakhvalov’s theorem, thereis afunction f € C7, such that theerror is

I(f)=1(5)| > k-N77,

where the constant £ > 0 dependsonly on M and r. Thuseven if f hasabounded, contin-
uous first derivative, no quadrature rule has an error bound better than O (N ~1/%),

2.3 A bit of probability theory

Before describing Monte Carlo integration, we review afew concepts from probability and
statistics. See Pitman [1993] for an introduction to probability, and Halmos [1950] for an
introduction to measure theory. Brief introductionsto probability theory can also be found
in the Monte Carlo references cited above.

2.3.1 Cumulativedistributions and density functions

Recall that the cumulative distribution function of areal-valued random variable X is de-
fined as

P(x) = Pr{X <ua},
and that the corresponding probability density function is

po) = 4o

(also known as the density function or pdf). Thisleads to the important relationship

Pria<X<p) = /ﬁp(x) dr = P(3) - P(a). 2.3)

e

The corresponding notions for amultidimensional random vector (X', ..., X¢) arethe
joint cumulative distribution function

P(x',...,2%) = Pri{X' <az'foradli=1,...,s}
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and the joint density function

0°P
1 s _ 1 s
p(aj7 71.) axl -.axs( ? 7x>1
so that we have the relationship
Pr{re D} = /p(:c17...,x5)d:v1---dx5 (2.4)
D

for any Lebesgue measurable subset D C IR°.

More generally, for arandom variable X with valuesin an arbitrary domain €2, its prob-
ability measure (also known as aprobability distribution or distribution) isameasure func-
tion P such that

P(D) = Pr{X e D}

for any measurable set D C . In particular, a probability measure must satisfy P(Q2) = 1.
The corresponding density function p is defined as the Radon-Nikodym derivative

plz) = ‘fl—im

which is ssimply the function p that satisfies

PD) = [ pla)du(a). (25)

Thus, the probability that X € D can be obtained by integrating p(z) over the given region
D. This should be compared with equations (2.3) and (2.4), which are simply special cases
of the more general relationship (2.5).

Note that the density function p depends on the measure 1« used to define it. We will
use the notation p = P, to denote the density with respect to a particular measure /., corre-
sponding to the notation w,, = du / dx that is often used in analysis. This notation will be
useful when there are several relevant measure function defined on the same domain§2 (for
example, the solid angle and projected solid angle measures that will be described in Chap-
ter 3). See Halmos [1950] for further information on measure spaces and Radon-Nikodym
derivatives.
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2.3.2 Expected value and variance

The expected value or expectation of arandom variableY = f(X) isdefined as

ElY] = [ f(e)ple) du(a). (26)

whileitsvarianceis
VIY] = E[(Y - E[Y])?]. 2.7)

We will always assume that expected value and variance of every random variableexist (i.e.
the corresponding integral isfinite).

From these definitions, it is easy to see that for any constant « we have

ElaY] = aE[Y]
ViaY] = &*V[Y].

The following identity is aso useful:

N N
B3| - Yem
=1 =1
which holdsfor any randomvariablesYi, . . ., Yy. Onthe other hand, the following identity

holds only if the variables Y; are independent:

N N
v [zm] v
i=1 =1
Notice that from these rules, we can derive a simpler expression for the variance:

VY] = E[(Y - EY])?] = E[Y*] - E[Y]".

Another useful quantity isthe standard deviation of arandom variable, which issimply
the square root of its variance:

Thisisaso known asthe RMSerror.
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2.3.3 Conditional and marginal densities
Let X € Q; andY € Q, beapair of random variables, so that
(X,Y)eQ

where Q2 = ; x 2,. Let P be the joint probability measure of (X, Y), so that P(D) rep-
resents the probability that (X, Y") € D for any measurable subset D C 2. Then the corre-
sponding joint density function p(x, y) satisfies

P(D) = [ pla.y) dun(a) draa(y)

where 1; and i are measures on €2; and €2, respectively. Hereafter we will drop the mea-
sure function notation, and simply write

P(D) = /Dp(x?y) da dy.
The marginal density function of X isnow defined as
pae) = [ ple.y)dy. (28)
while the conditional density function p(y | x) is defined as
plyle) = px,y) /p(x). (2.9)

The marginal density p(y) and conditional density p(x | y) are defined in a similar way,
leading to the useful identity

plr,y) = plyle) plr) = plxly)ply).

Another important concept is the conditional expectation of a random variable G =
g(X,Y), defined as

EGla] = [ alwnplyleydy = LIGECD - o)

We will also use the notation E'y [] for the conditional expectation, which emphasizesthe
fact that Y isthe random variable whose density function is being integrated.
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Thereisavery useful expression for the variance of GG intermsof its conditional expec-
tation and variance, namely

In other words, V'[G] is the mean of the conditional variance, plus the variance of the con-
ditional mean. To prove thisidentity, recall that

V[F] = E[F?] - E[F],
and observe that

ExVyG+VxEyG = Bx{Ey[G"] - [EyG’} + Ex[EyG)’ — [ExEyG)’
= ExEy|[G?] — [ExEyG)?
= V[aG].

We will use thisidentity below to analyze certain variance reduction techniques, including
stratified sampling and the use of expected values.

2.4 Basic Monte Carlointegration

The idea of Monte Carlo integration is to evaluate the integral

I = [ f@)du()

using random sampling. Initsbasic form, thisis done by independently sampling N points
X1, ..., Xy according to some convenient density function p, and then computing the es-
timate

1 X f(X)
Fy = — : (2.12)
A P e

Here we have used the notation Fy rather than I to emphasi ze that the result is a random
variable, and that its properties depend on how many sample pointswere chosen. Note that
this type of estimator was first used in the survey sampling literature (for discrete rather
than continuous domains), where it is known as the Horvitz-Thompson estimator [Horvitz
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& Thompson 1952].

For example, suppose that the domainis2 = [0, 1)* and that the samples X; are chosen
independently and uniformly at random. In this case, the estimator (2.12) reducesto

1
Fy = NZf(Xi>7

=1
which has the same form as a quadrature rule except that the sample locations are random.

Itisstraightforward to show theestimator Fy givesthe correct result on average. Specif-
icaly, we have

_ 1 X f(X)
i) = &[5 2]
- 32 [ I8 ae)

I
s~ =~

I

~
~
=
=¥
=
=

provided that f(x)/p(z) isfinite whenever f(z) # 0.

Advantagesof Monte Carlointegration. Monte Carlo integration hasthefollowing ma-
jor advantages. First, it converges at arate of O(/N~'/2) in any dimension, regardless of the
smoothness of the integrand. This makes it particularly useful in graphics, where we often
need to calculate multi-dimensional integrals of discontinuous functions. The convergence
rate is discussed in Section 2.4.1 below.

Second, Monte Carlo integration is simple. Only two basic operations are required,
namely sampling and point evaluation. This encourages the use of object-oriented black
box interfaces, which allow great flexibility in the design of Monte Carlo software. In the
context of computer graphics, for example, it is straightforward to include effects such mo-
tion blur, depth of field, participating media, procedural surfaces, and so on.

Third, Monte Carlo is general. Again, this stems from the fact that it is based on ran-
dom sampling. Sampling can be used even on domainsthat do not have anatural correspon-
dence with [0, 1]*, and are thus not well-suited to numerical quadrature. As an example of
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this in graphics, we observe that the light transport problem can be naturally expressed as
an integral over the space of all transport paths (Chapter 8). Thisdomain istechnically an
infinite-dimensional space (which would be difficult to handle with numerical quadrature),
but it is straightforward to handle with Monte Carlo.

Finally, Monte Carlo methods are better suited than quadrature methods for integrands
with singularities. Importance sampling (see Section 2.5.2) can be applied to handle such
integrandseffectively, evenin situationswherethereisno analytic transformation toremove
the singularity (see the discussion of rejection sampling and the Metropolis method bel ow).

In the remainder of thissection, we discussthe convergencerate of Monte Carlo integra-
tion, and give a brief review of sampling techniques for random variables. We then discuss
the properties of more genera kinds of Monte Carlo estimators.

24.1 Convergencerates

To determine the convergence rate of Monte Carlo integration, we start by computing the
variance of Fy. To simplify the notation let Y; = f(X;)/p(X;), so that

1
Alsolet Y = Y,. Wethen have
2
VY] = E[Y?] - E[Y]* = QJ;((;)) du(z) — I*.

Assuming that this quantity isfinite, it iseasy to check that the variance of V'[Fy| decreases
linearly with N:

VIFN] = Vl%éY] = %V[é K—] = %gv[m = %V[Y] (2.13)

where we have used V[a Y] = «? V[Y] and the fact that the Y; are independent samples.
Thus the standard deviation is

U[FN] = UY?

1
VN
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which immediately shows that the RM S error converges at arate of O(N /).
It is also possible to obtain probabilitistic bounds on the absolute error, using Cheby-

chev'sinequality:
1/2
Pr{w—E[Fn > (@) } <,

which holds for any random variable F' such that V[F] < co. Applying thisineguality to
the variance (2.13), we obtain

1/2
Pr{|FN—I| > N7/2 (@) } < 4.

Thus for any fixed threshold §, the absol ute error decreases at the rate O (N ~1/2).

Tighter bounds on the absolute error can be obtained using the central limit theorem,
which statesthat /'y convergestoanormal distributioninthelimitas N — oo. Specifically,
it states that

1 N O’[Y] 2
im Prl— S v,i-Ey] <22 / e~ g,
i, {NEI Yl< \/N} 7
where the expression on theright isthe (cumulative) normal distribution. Thisequation can
be rearranged to give

Pri{|Fy —I| > to[Fy]} \/2/7r/ /2 g

The integral on the right decreases very quickly with ¢; for example when ¢ = 3 the right-
hand sideisapproximately 0.003. Thus, thereisonly about a0.3% chancethat F'y will differ
from its mean by more than three standard deviations, provided that IV is large enough for
the central limit theorem to apply.

Finally, note that Monte Carlo integration will converge even if the variance V[Y] is
infinite, provided that the expectation E'[Y'] exists (although convergence will be slower).
Thisis guaranteed by the strong law of large numbers, which states that

Pr {hm —ZY_E[Y]} = 1.

N —o00 —1
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2.4.2 Sampling random variables

There are a variety of techniques for sampling random variables, which we briefly review
here. Further details can be found in the references given in the introduction.

One method is the transformation or inversion method. In one dimension, suppose that
we want to sample from a density function p. Letting P be the corresponding cumulative
distribution function, the inversion method consists of letting X = P~'(U), where U is
auniform random variable on [0, 1]. It is easy to verify that X has the required density p.
Thistechnique can easily be extended to several dimensions, either by computing marginal
and conditional distributions and inverting each dimension separately, or more generally
by deriving atransformation x = ¢(u) with an appropriate Jacobian determinant (such that
| det(J,(2))|~" = p(x), where J, denotes the Jacobian of g).

The main advantage of the transformation techniqueisthat it allows samplesto be strat-
ified easily, by stratifying the parameter space [0, 1]° and mapping these samplesinto 2 (see
Section 2.6.1). Another advantage is that the technique has a fixed cost per sample, which
can easily be estimated. The main disadvantage is that the density p(z) must be integrated
analytically, which is not always possible. It is also preferable for the cumulative distribu-
tion to have an analytic inverse, since numerical inversion istypically slower.

A second sampling techniqueistherejection method, dueto von Neumann [Ulam 1987].
The ideaisto sample from some convenient density ¢ such that

p(r) < Mq(x)

for some constant M. Generally, the samples from ¢ are generated by the transformation
method. We then apply the following procedure:

function REJECTION-SAMPLING()

fori=1tooo
Sample X; according to q.
Sample U; uniformly on [0, 1].
if Uy < p(Xi)/ (Mq(X,)
then return X;
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It is easy to verify that this procedure generates a sample X whose density functionisp.

The main advantage of rejection sampling isthat it can be used with any density func-
tion, even those that cannot be integrated analytically. However, we still need to be able to
integrate somefunction M ¢ that isan upper bound for p. Furthermore, thisbound should be
reasonably tight, since the average number of samplesthat must be taken before acceptance
is M. Thus, the efficiency of rejection sampling can be very low if it is applied naively.
Another disadvantage is that it is difficult to apply with stratification: the closest approxi-
mation isto stratify the domain of the random vector (X, U ), but the resulting stratification
isnot as good as the transformation method.

A third general sampling technique is the Metropolis method (also known as Markov
chain Monte Carlo), which will be described in Chapter 11. This technique is useful for
sampling arbitrary densities on high-dimensional spaces, and has the advantage that the
density function does not need to be normalized. The main disadvantage of the Metropolis
method is that the samples it generates are not independent; in fact they are highly corre-
lated. Thus, it is most useful when we need to generate a long sequence of samples from
the given density p.

Finally, there are varioustechniquesfor sampling from specific distributions (see Rubin-
stein [1981]). For example, if X isthe maximum of & independent uniform random vari-
ablesU,, ..., Uy, then X hasthe density functionp(z) = ka* ! (where0 < x < 1). Such
“tricks’ can be used to sample many of the standard distributions in statistics, such as the
normal distribution [Rubinstein 1981].

2.4.3 Estimatorsand their properties

So far we have only discussed one way to estimate an integral using random samples,
namely the standard technique (2.12). However, there are actually a great variety of tech-
niques available, which are encompassed by the concept of a Monte Carlo estimator. We
review the various properties of estimators and why they are desirable.

The purpose of a Monte Carlo estimator is to approximate the value of some quantity
of interest 2 (also called the estimand). Normally we will define  asthe value of agiven
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integral, although more general situations are possible (e.g. @ could be the ratio of two in-
tegrals). An estimator isthen defined to be afunction of the form

FN - FN()(lw-wXN); (214)
wherethe X; arerandom variables. A particular numerical value of F'y iscalled an estimate.

Note that the X; are not necessarily independent, and can have different distributions.

Note that there are some differencesin the standard terminol ogy for computer graphics,
as compared to statistics. In statistics, the value of each X; is called an observation, the
vector (X1,...,Xy) iscaled the sample, and NV is called the sample size. In computer
graphics, on the other hand, typically each of the individual X; is referred to as a sample,
and NNV isthe number of samples. We will normally use the graphics conventions.

We now define a number of useful properties of Monte Carlo estimators. The quantity
Fy — @ iscaled theerror, and its expected valueis called the bias:

BlFN] = E[Fy —QJ. (2.15)
An estimator is called unbiased if 5[F| = 0 for all samplesizes N, or in other words if
E[Fy] = Q foral N >1. (2.16)

For example, the random variable

~

(Xi)
(X)

1
FN:NZ

=1

=

isan unbiased estimator of theintegral I = [, f(x) du(x) (aswe saw in Section 2.4).

An estimator iscalled consistent if the error Fy — () goesto zero with probability one,
or in other words if

Pr{ lim Fy — Q} ~ 1. 2.17)
N —o0

For an estimator to be consistent, a sufficient condition is that the bias and variance both go
to zero as V isincreased:
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In particular, an unbiased estimator is consistent as long as its variance decreases to zero as
N goesto infinity.

The main reason for preferring unbiased estimators is that it is easier to estimate the
error. Typically our goal isto minimize the mean squared error (MSE), defined by

MSE[F] = E[(F - Q)?] (2.18)

(where we have dropped the subscript V). In general, the mean squared error can be rewrit-
ten as

MSE[F] = E[(F - Q)

so that to estimate the error we must have an upper bound on the possible bias. In general,
this requires additional knowledge about the estimand @, and it is often difficult to find a
suitable bound.

On the other hand, for unbiased estimatorswe have E[F'| = (), so that the mean squared
error isidentical to the variance:

MSE[F] = V|F] = E[(F - E[F))Y.

Thismakesit far easier to obtain error estimates, by simply taking several independent sam-
ples. Letting Y7, ..., Yy beindependent samples of an unbiased estimator Y, and letting

1 N
By =5 XY

=1

as before (which is also an unbiased estimator), then the quantity

VMAZN%IK%§¥$_<%2KY}

isan unbiased estimator of the variance V[ Fy| (see Kalos & Whitlock [1986]). Thus, error
estimates are easy to obtain for unbiased estimators.
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Notice that by taking many independent samples, the error of an unbiased estimator can
be made as small as desired, since

VIFy] = VIR]/N.

However, thiswill also increase the running time by a factor of V. Ideally, we would like
to find estimators whose variance and running time are both small. Thistradeoff issumma-
rized by the efficiency of a Monte Carlo estimator:

(2.19)

where T'[F'] is the time required to evaluate F'. Thus the more efficient an estimator is, the
lower the variance that can be obtained in a given fixed running time.

2.5 Variancereduction I: Analyticintegration

The design of efficient estimatorsis a fundamental goal of Monte Carlo research. A wide
variety of techniques have been developed, which are often ssmply called variance reduc-
tion methods. In the following sections, we describe the variance reduction methods that
have proven most useful in computer graphics.? These methods can be grouped into sev-
eral categories, based around four main ideas:

e analytically integrating a function that is similar to the integrand;
¢ uniformly placing sample points across the integration domain;

e adaptively controlling the sample density based on information gathered during sam-
pling; and

e combining samples from two or more estimators whose values are correlated.

°Note that some variance reduction methods are useful only for one-dimensional integrals, or only for
smooth integrands (e.g. certain antithetic variates transformations[Hammersley & Handscomb 1964]). Since
these situations are usually better handled by numerical quadrature, we do not discuss such methods here.
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We start by discussing methods based on analytic integration. There are actually sev-
eral ways to take advantage of thisidea, including the use of expected values, importance
sampling, and control variates. These are some of the most powerful and useful methods
for computer graphics problems.

Note that many variance reduction methods were first proposed in the survey sampling
literature, long before Monte Carlo methods were invented. For example, techniques such
asstratified sampling, importance sampling, and control variateswereall first usedin survey
sampling [Cochran 1963].

25.1 Theuseof expected values

Perhaps the most obvious way to reduce variance is to reduce the dimension of the sample
space, by integrating analytically with respect to one or more variables of the domain. This
ideais commonly referred to as the use of expected values or reducing the dimensionality.
Specifically, it consists of replacing an estimator of the form

F = f(X,Y)/p(X.Y) (2.20)
with one of the form
F' = f(X)/p(X), (2.21)

where f'(z) and p(x) are defined by

o) = [ flay)dy
pla) = [pley)dy.

Thus, to apply thistechnique we must be ableto integrate both f and p with respect toy. We
also must be able to sample from the marginal density p(z), but this can be done by simply
generating (X, Y') as before, and ignoring the value of Y.

The name of thistechnique comes from the fact that the estimator F” is simply the con-
ditional expected value of F:
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[t o
/f()(7 ) )( y)
p(X,y) pr y') dy'
= f(X)/p(X).

This makes the variance reduction easy to analyze. Recalling the identity
VIF] = ExVwF +VxEyF

from equation (2.11), and using the fact that /' = Ey F', we immediately obtain
VIF] = V[F'] = ExWyF.

This quantity is always non-negative, and represents the component of the variance of F
that was caused by the random sampling of Y (as one might expect).

The use of expected valuesisthe preferred variance reduction technique, aslong asitis
not too expensive to evaluate and sample the analytically integrated quantities. However,
note that if expected values are used for only one part of alarger calculation, then variance
can actually increase. Spanier & Gelbard [1969] give an example of thisin the context of
neutron transport problems, by comparing the variance of the absorption estimator (which
records a sample only when a particle is absorbed) to that of the collision estimator (which
records the expected value of absorption at each collision along a particle’s path). They
show that there are conditions where each of these estimators can have lower variance than
the other.

2.5.2 Importance sampling

Importance sampling refers to the principle of choosing a density function p that issimilar
totheintegrand f. Itisawell-known fact that the best choiceisto let p(x) = ¢f(x), where
the constant of proportionality is

1
© T To W) duly) (2.22)
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(to ensure that p integrates to one).® Thisleads to an estimator with zero variance, since

_ X1

- op(X)  c

for al sample points X .

Unfortunately this technique is not practical, since we must already know the value of
the desired integral in order to compute the normalization constant ¢. Nevertheless, by
choosing a density function p whose shape is similar to f, variance can be reduced. Typ-
icaly thisis done by discarding or approximating some factors of f in order to obtain a
function ¢ that can be integrated analytically, and then letting p o« ¢. It is also important
to choose p such that there is a convenient method of generating samplesfrom it. For low-
dimensional integration problems, auseful strategy isto construct adiscrete approximation
of f (e.g. apiecewise constant or linear function). This can be done either during a sepa-
rate initialization phase, or adaptively as the algorithm proceeds. The integral of such an
approximation can be computed and maintained quite cheaply, and sampling can be done
efficiently by means of tree structures or partial sums.

In summary, importance sampling is one of the most useful and powerful techniques of
Monte Carlo integration. It isparticularly helpful for integrandsthat have large valueson a
relatively small part of the domain, e.g. due to singularities.

2.5.3 Control variates

With control variates, theideaisto find afunction ¢ that can be integrated analytically and
issimilar to the integrand, and then subtract it. Effectively, the integral is rewritten as

1= [ g@)du(@) + [ f@) - g(@) du(a).

and then sampled with an estimator of the form

o= /Qg(a:) dp(x) + % ; f(X;j(;(ig)(Xi)

3We assumethat f is non-negativein this discussion. Otherwise the best choiceisto let p oc | f|, however
the variance obtained this way is no longer zero [Kalos & Whitlock 1986].
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where the value of the first integral is known exactly. (As usual p is the density function
from which the X; are chosen.) This estimator will have a lower variance than the basic
estimator (2.12) whenever
e [f()(i) - Q(Xi)] <V [f(Xi)] '
p(Xi) p(Xi)
In particular, notice that if ¢ is proportional to p, then the two estimators differ only by a

constant, and their variance is the same. Thisimpliesthat if ¢ is aready being used for
importance sampling (up to a constant of proportionality), then it is not helpful to useit as

a control variate as well.* From another point of view, given some function ¢ that is an
approximation to f, we must decide whether to use it as a control variate or as a density
function for importance sampling. Itispossibleto show that either one of these choice could
be the best, depending on the particular f and ¢g. In generdl, if f — ¢ isnearly a constant
function, then ¢ should be used as a control variate; whileif f /g isnearly constant, then ¢
should be used for importance sampling [Kalos & Whitlock 1986].

As with importance sampling, control variates can be obtained by approximating some
factors of f or by constructing a discrete approximation. Since there is no need to gener-
ate samples from ¢, such functions can be dightly easier to construct. However, note that
for g to be useful as a control variate, it must take into account all of the significant factors
of f. For example, consider an integral of the form f(x) = fi(z) f2(x), and suppose that
f1(z) represents the reflectivity of a surface at the point =, while f,(x) represents the in-
cident power per unit area. Without some estimate of the magnitude of f,, observe that f;
isvirtually useless as a control variate. On the other hand, f; can be used for importance
sampling without any difficulties.

Control variates have had very few applicationsin graphics so far (e.g. see Lafortune &
Willems [19953]). One problem with the technique is the possibility of obtaining negative
sample values, even for an integrand that is strictly positive. This can lead to large relative
errors for integrals whose true value is close to zero (e.g. pixelsin the dark regions of an
image). On the other hand, the method is straightforward to apply, and can potentialy give
amodest variance reduction at little cost.

4See the discussion under Russian roul ette below.
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2.6 Variancereduction |I: Uniform sample placement

Another important strategy for reducing variance is to ensure that samples are distributed
more or less uniformly over the domain. We will examine several techniques for doing
this, namely stratified sampling, Latin hypercube sampling, orthogonal array sampling, and
guasi-Monte Carlo methods.

For these techniques, it is typically assumed that the domain is the s-dimensional unit
cube [0, 1]°. Other domains can be handled by defining an appropriate transformation of the
formT : [0,1]* — Q. Notethat by choosing different mappings ', the transformed samples
can be given different density functions. Thismakesit straightforward to apply importance
sampling to the techniques described below.®

2.6.1 Stratified sampling

The idea of stratified sampling is to subdivide the domain €2 into several non-overlapping
regions (2, ..., 2, such that

UQi - Q
=1

Each region Q; iscalled astratum. A fixed number of samplesn; isthen taken within each
2;, according to some given density function p;.

For simplicity, assumethat 2 = [0, 1]* and that p; issimply the constant function on €2;.
This leads to an estimate of the form

N (223)

Here v; = 1(£2;) isthe volume of region €2;, and each X; ; is an independent sample from

SNotethat if thedesired density p(z) iscomplex, it may bedifficult to find atransformation 7" that generates
it. This can be solved with rejection sampling, but the resulting samples will not be stratified as well.
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p;. The variance of thisestimator is
VIF = > vlo}/ni, (2.25)
=1

where o7 = V[f(X; ;)] denotes the variance of f within ;.

To compare this against unstratified sampling, suppose that n; = v; N, where N isthe
total number of samplestaken. Equation (2.25) then simplifiesto

1 n
VIF'] = N ; v o2
On the other hand, the variance of the corresponding unstratified estimator i<°
1 n n
VIF] = N Zviag + Zvi(ﬂi_I)Q , (2.26)
=1 =1

where 1; is the mean value of f in region €2;, and I the mean value of f over the whole
domain. Since the right-hand sum is always non-negative, stratified sampling can never
increase variance.

However, from (2.26) we see that variance is only reduced when the strata have differ-
ent means; thus, the strata should be chosen to make these means as different as possible.
Ideally, this would be achieved by stratifying the range of the integrand, by finding strata
suchthat z; € Q; impliesz; < xy < --- < ay.

Another point of view isto analyze the convergence rate. For functionswith a bounded
first derivative, the variance of stratified sampling converges at arate of O(N~'=2/%), while
if the function is only piecewise continuous then the variance is O(N~'~1/*) [Mitchell
1996]. (The convergence rate for the standard deviation is obtained by dividing these ex-
ponents by two.) Thus, stratified sampling can increase the convergence rate noticeably in
low-dimensional domains, but has little effect in high-dimensional domains.

In summary, stratified sampling is a useful, inexpensive variance reduction technigue.

5To obtain this result, observe that an unstratified samplein [0, 1]° is equivalent to first choosing arandom
stratum I;; (according to the discrete probabilities v;), and then randomly choosing X ; within Q7,. From this
point of view, X ; is chosen conditionally on I;. This lets us apply the identity (2.11) to express the variance
as asum of two components, yielding equation (2.26).
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It ismainly effective for low-dimensional integration problems where the integrand is rea-
sonably well-behaved. If thedimensionishigh, or if theintegrand has singularitiesor rapid
oscillationsin value (e.g. a texture with fine details), then stratified sampling will not help
significantly. Thisisespecially true for problemsin graphics, where the number of samples
taken for each integral isrelatively small.

2.6.2 Latin hypercube sampling

Supposethat atotal of N sampleswill betaken. Theideaof Latin hypercube samplingisto
subdivide the domain [0, 1]° into N subintervals along each dimension, and to ensure that
one sample liesin each subinterval. This can be done by choosing s permutations 74, . . .,
7 Of {1,..., N}, and letting the sample locations be

(i) — Ui,

X/ =
(3 N bl

(2.27)

where X/ denotes the j-th coordinate of the sample X;, and the U, ; are independent and
uniformly distributed on [0, 1]. In two dimensions, the sample pattern corresponds to the
occurrences of asingle symbol inalLatin square (i.e.an N x N array of N symbols such
that no symbol appears twice in the same row or column).

Latin hypercube sampling was first proposed as a Monte Carlo integration technique
by McKay et a. [1979]. It isclosely related to L atin square sampling methods, which have
been used inthedesign of statistical experimentssinceat least the 1920's(e.g. inagricultural
research [Fisher 1925, Fisher 1926]). Yates [1953] and Patterson [1954] extended these
techniques to arbitrary dimensions, and also analyzed their variance-reduction properties
(in the context of survey sampling and experimental design). In computer graphics, Latin
square sampling was introduced by Shirley [1990a] under the name of N-rooks sampling
[Shirley 1990a, Shirley 1991].

The first satisfactory variance analysis of Latin hypercube sampling for Monte Carlo
integration was given by Stein [1987]. First, we define a function g(x) to be additive if it
has the form

o@) = 3 @), (2.28)
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where 27 denotes the j-th component of - € [0, 1]°. Next, let f.qq denote the best additive
approximation to f, i.e. the function of the form (2.28) which minimizes the mean squared
error

[ (Fuaaw) = £ dp).
We can then write f as the sum of two components

f(:L’) = fadd(x)"i_freS(x)?

where f.., isorthogonal to all additive functions, i.e.

| Feel@) () dp@) = 0
for any additive function g.

Stein [1987] was then able to show that variance of Latin hypercube sampling is

VIF) = 5 [ 20 dute) + o(1/N), 229)

whereo(1/N) denotesafunction that decreases faster than1/N. Thisexpression should be
compared to the variance using /V independent samples, whichis

VIFL = 5 ([ 2@ dn) + [ (Gualo) = D dulo))

Thevarianceinthe second caseisawayslarger (for sufficiently large V). ThusLatin hyper-
cube sampling improves the convergence rate for the additive component of the integrand.
Furthermore, it isnever significantly worse than using independent samples [ Owen 19974]:

N
N -1

VIF'] < VIF]  forN >2.

Latin hypercube sampling is easy to implement and works very well for functions that
are nearly additive. However, it does not work that well for image sampling, because
the samples are not well-stratified in two dimensions. Except in specia cases (e.g. pixels
with vertical or horizontal edges), it hasthe same O(1/N) variance that would be obtained
with independent samples. Thisisinferior to stratified sampling, for which the variance is
O(N~2) for smooth functions and O (N ~*/2) for piecewise continuous functions,
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2.6.3 Orthogonal array sampling

Orthogonal array sampling [Owen 1992, Tang 1993] isan important generalization of Latin
hypercube sampling that addresses some of these deficiencies. Rather than stratifying all of
the one-dimensional projections of the samples, it stratifies all of the t-dimensional projec-
tionsfor somet¢ > 2. Thisincreases the rate of convergence for the components of f that
depend on ¢ or fewer variables.

Anorthogonal array of strength ¢ isan IV x s array of symbols, drawn from an al phabet
of size b, such that every NV x t submatrix contains the same number of copies of each of
thed' possiblerows. (The submatrix isnot necessarily contiguous; it can contain any subset
of the columns.) If we let \ denote the number of times that each row appears (where A is
known as the index of the array), it isclear that N = \b*. The following table gives an
example of an orthogonal array whose parametersare OA(N, s, b,t) = (9,4, 3, 2):

NININIFPIPPOIO|IO
NIFRP|IOINIP|IOIN|FL|O
RP|IO|INIOIN|FL|IN|FL,]|O
O|/FR,|IN|INOC|FRL,|FP|IN|O

Various methods are known for constructing orthogonal arrays of strength¢ = 2 [Bose
1938, Bose & Bush 1952, Addelman & Kempthorne 1961], strengtht = 3 [Bose & Bush
1952, Bush 1952], and arbitrary strengthst¢ > 3 [Bush 1952]. Implementations of these
methods are publicly available [Owen 1995a].

Let A bean N x s orthogonal array of strength ¢, where the symbolsin the array are
{0,1,...,b— 1}. Thefirst step of orthogonal array sampling is to randomize the array, by
applying a permutation to the alphabet in each column. That is, we let

Ai,j = ﬂ—j(Ai,j) for a”Z?]7
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wherer, ..., 7, arerandom permutationsof the symbols{0,...,b—1}. Itiseasy to check
that A is an orthogonal array with the same parameters (N, s,b,t) astheorigina array A.
This step ensures that each of the b* possible rows occursin A with equal probability.

Now let the domain be [0, 1]*, and consider the family of b* subcubes obtained by split-
ting each axisinto b intervals of equal size. Each row of A can be interpreted as an index
into this family of subcubes. The idea of orthogonal array sampling is to take one sample
in each of the NV subcubes specified by the rows of A. Specifically, the j-th coordinate of
sample X; is

X/ = (A + U ) /b

where the U; ; are independent uniform samples on [0, 1]. Because of the randomization
step above, it is straightforward to show that each X is uniformly distributed in [0, 1]*, so
that Fiy = (1/N) XN, f(X;) isan unbiased estimator of the usual integral 1.

To see the advantage of this technique, consider the sample distribution with respect to
any t coordinate axes (i.e. project the samples into the subspace spanned by these axes).
This subspace can be divided into b* subcubes by splitting each axis into b intervals. The
main property of orthogonal array sampling isthat each of these subcubes containsthe same
number of samples. To see this, observe that the coordinates of the projected samples are
specified by a particular N x t submatrix of the orthogonal array. By the definition of or-
thogonal arrays, each of the possible b rows occurs A times in this submatrix, so that there
will be exactly A samplesin each subcube.

Orthogonal array sampling is clearly a generalization of Latin hypercube sampling.
Rather than stratifying the one-dimensional projections of the samples, it stratifies all of the
t-dimensional projections simultaneously. (There are (j) such projectionsin al.)

2.6.3.1 Analysisof variance decompositions

The variance reduction properties of orthogonal array sampling can be analyzed using con-
tinuous analysis of variance (anova) decompositions [Owen 1994, Owen 1992]. Our de-
scription follows [Owen 1992], which in turn is based on [Efron & Stein 1981].

Let S ={1,...,s} betheset of al coordinate indices, and let U C S be any subset of
these indices (there are 2° possible subsetsin all). We will use the notation ¥ to refer to
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the set of coordinate variables 27 for j € U. The anova decomposition of a given function
f can then be written as a sum

flz) = Z fu@Y), (2.30)
Ucs

where each function f;; depends only on the variablesindexed by U'.

The function when U = () does not depend on any variables, and is called the grand
mean:

I =fy= /[O)I]Sf(l’)dx-

The other 2° — 1 subsets of U are called sources of variation. The components of f that
depend on just one variable are called the main effects and are defined as

fi@) = [(f@@)=1) [Tda'.
i#j
Notice that al of these functions are orthogonal to the constant function fy = 7. Similarly,
the two-factor interactions are defined by

fir@™) = [ (@)= 1= f) = £el) T] o’
i#j.k
which represent the componentsof f that depend on two particular variablestogether. These
functions are orthogonal to f;; and to al the f;.
In generd, fi; isdefined by
fo(@) = / ( OESY fv(xv)> dz5~Y (2.31)
vVcUu

where the sum is over all proper subsets of U (V' # U). The resulting set of functionsis
orthogonal, i.e. they satisfy

[ foa”) fo@¥yde = 0
whenever U # V. Thisimpliesthe useful property that

/fQ(:v)dx = Z /f?](xU)dx,

Ucs
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so that the variance of f can be written as

) - > [ i

|U|>0

Asaparticular case of thisanalysis, the best additive approximationto f is
faaa(z) = I+Zf] (27)

wheretheresidua f,., = f — f.4q 1SOrthogonal to al additive functions. The variance of
Latin hypercube sampling can thus be rewritten as

= 5 X [ fadr + o(1/N),
|U\>1
i.e. the single-variable components of the variance converge at arate faster than1/N.
Orthogonal array sampling generalizesthisresult; it ispossibleto show that the variance
is[Owen 1992, Owen 1994]

Oon = — Z /fU )dx + o(1/N),

\U|>t

i.e. the convergence rate is improved with respect to all components of the integrand that
depend on ¢ coordinates or less.

Thecaset = 2 is particularly interesting for graphics. For example, if we apply this
technique to distribution ray tracing, it ensuresthat all the two dimensional projections are
well stratified (over the pixel, lens aperture, light source, etc). Thisachievesasimilar result
to the sampling technique proposed by Cook et al. [1984], except that all combinations of
two variables are stratified (including combinations such as the pixel z-coordinate and the
aperture x-coordinate, for example).

2.6.3.2 Orthogonal array-based L atin hypercube sampling

Notice that because the ¢-dimensional margins are well-stratified, the w-dimensional mar-
gins are also stratified for any w < t. However, the resulting stratification is not as good.
For example, in any one-dimensional projectional there will be exactly \b' ! samplesin
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each interval of width 1/b. Thisisinferior to Latin hypercube sampling, which places one
samplein each interval of width 1/(Ab").

There is a simple modification to orthogonal array sampling that yields the same one-
dimensional stratification properties as Latin hypercube sampling. (The result, logically
enough, iscalled orthogonal array-based Latin hypercube sampling[Tang 1993].) Theidea
isto remap the Ab* symbolswithin each columninto asingle sequence {0, 1, ..., \b* — 1},
by mapping the \b* ! identical copies of each symbol . into arandom permutation of the
symbols

Aty o A (m 1) — 1.

This process is repeated for each column separately. Letting A’ be the modified array, the
sample locations are then defined as
- AL+ U
Xl = = >
Thisensures that the samples are maximally stratified for each one-dimensional projection,
aswell asfor each t-dimensional projection. It ispossibleto show that thisleadsto afurther
reduction in variance [ Tang 1993].

Thistechniqueissimilar to multi-jittered sampling [Chiu et al. 1994], which corresponds
to the special casewheres =2 and ¢t = 2.

2.6.4 Quasi-Monte Carlo methods

Quasi-Monte Carlo methods take these ideas a step further, by dispensing with randomness
completely. Theideaisto distribute the samplesas uniformly as possible, by choosing their
locations deterministicaly.

2.6.4.1 Discrepancy

Let P = {x1,...,2n} beasetof pointsin [0, 1]*. Typically, the goal of quasi-Monte Carlo
methods is minimize the irregularity of distribution of the samples with respect to some
guantitative measure. One such measureisthestar discrepancy of P. Let 5* denote the set
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of all axis-aligned boxes with one corner at the origin:
B* = {B=[0,uy] X -+ x[0,u,] |0 <wu; <1forali}.

|deally, we would like each box B to contain exactly A\(B)N of the pointsin P, where
A(B) = uy---u, isthe volume of B. The star discrepancy simply measures how much
P deviates from thisideal situation:

Di(P) = sup |PAEOBE

R A(B)|, (2.32)

where #{ P N B} denotes the number of points of P that are inside the box B.

Discrepancy measures can also be defined with respect to other sets of shapes (e.g. ar-
bitrary axis aligned boxes, or convex regions [Niederreiter 1992]). For two-dimensional
image sampling, it is particularly useful to measure discrepancy with respect to edges, by
considering thefamily of shapes obtained by intersecting [0, 1]* with an arbitrary half-plane
[Mitchell 1992]. The relevance of discrepancy to image sampling was first pointed out by
Shirley [1991].

The significance of the star discrepancy isthat it is closely related to bounds on the in-
tegration error. Specifically, the Koksma-Hlawka inequality states that

% ;f(xl) — /[ flx)de| < Vur(f) DN(P),

0,1]°

where V; « (f) isthe variation of f in the sense of Hardy and Krause [Niederreiter 1992].
Thus, the maximum integration error is directly proportional to the discrepancy, provided
that the variation V x (f) isfinite. By finding low-discrepancy points sets and sequences,
we can ensure that the integration error is small.

It is important to note that for dimensions s > 2, the variation Vy x(f) is infinite
whenever f isdiscontinuous.” This severely limitsthe usefulness of these boundsin com-
puter graphics, where discontinuitiesare common. Also notethat since Vy  (f) istypically

"More precisely, Vi (f) = oo whenever f is discontinuous along a surface that is not perpendicular to
oneof the s coordinate axes. In general, notethat f must beat least s timesdifferentiablein order for Vi i (f)
to be bounded in terms of the partial derivativesof f. That is, letting M be an upper bound on the magnitude
of al partial derivatives of degree at most s, then Vi (f) < ¢M where the constant ¢ depends only on s
[Niederreiter 1992].
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harder to evaluate than the original integral, these worst-case bounds are not useful for es-
timating or bounding the error in practice.

2.6.4.2 Low-discrepancy pointssetsand sequences

A low-discrepancy sequence is an infinite sequence of points x, x, . . . such that the star

i - o)

discrepancy is

for any prefix P = {z1,...,xy}. (Notethat P isactually amultiset, i.e. the multiplicity of
the elements matters.) This result is achieved by a number of known constructions, and it
iswidely believed to be the best possible [Niederreiter 1992]. However, it should be noted
that the best current lower bound for an arbitrary dimension s is only

Dy(P) > Ol LT
i.e. there isa significant gap between these bounds.

If we drop the requirement that P is a prefix of an infinite sequence, the discrepancy
can be improved dlightly. A low-discrepancy point set is defined to be a multiset P =

{z1,..., 2y} for which

Di(P) = 0 <—“°g Al ) .
(More precisely, this should be the definition of a low-discrepancy point set construction,
since the bound does not make sense when applied to asingle point set P.)

Combining these bounds with the Koksma-Hlawkainequality, the error of quasi-Monte
Carlo integration is at most O((log N)*~!/N) using a low-discrepancy point set, or
O((log N)*/N) using a prefix of alow-discrepancy sequence.

Note that these bounds are of questionable value unless NV isvery large, since (log N)*
is much larger than NV for typical values of NV and s. In particular, notice that the function
(log N)*/N is monotonically increasing for N < ¢* (i.e. the larger the sample size, the
worse the error bound). In fact, we should not expect these error bounds to be meaningful
until (log N)* < N at thevery least, since otherwise the error bound is worse than it would
befor N = 2. To get an idea of how large N must be, consider the case s = 6. It iseasy
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to check that (log N)*/N > (log2)®/2 for dl N < 10% and thus we should not expect
meaningful error bounds until /V is substantially larger than this.

However, these error bounds are overly pessimistic in practice. Low-discrepancy se-
guences often give better results than standard Monte Carlo even when NV is fairly small,
provided that the integrand is reasonably well behaved.

2.6.4.3 Halton sequences and Hammer sley points

We now discuss several well-known constructions for low-discrepancy points sets and se-
quences. In one dimension, the radical inverse sequence x; = ¢,(i) is obtained by first
writing the base-b expansion of i:

i= 3 digb®,

k>0
and then reflecting the digits around the decimal point:
o(i) = > digb 7N
k>0

The special case when b = 2 iscalled the van der Corput sequence,

) 'y o) o T

co| Ut
ol W

oo

3
Y 47

N | =
e

The discrepancy of the radical-inverse sequence isO((log N)/N) in any base b (although
the implied constant increases with b).

To obtain alow-discrepancy sequence in several dimensions, we use a different radical
inverse sequence in each dimension:

i = (@6, (1), Poy (1), - - -, Po, ()

where the bases b; are all relatively prime. The classic example of this construction is the
Halton sequence, where the b; are chosen to be thefirst s primes:

Ty = (¢2(i)7 ¢3(i)7 ¢5(i)v R ¢ps(i)) .

The Halton sequence has a discrepancy of O((log N)°/N).
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If the number of samplepoints NV isknown in advance, thisdiscrepancy can beimproved
dightly by using equally spaced pointsi/N in the first dimension. The result is known as
the Hammerdley point set:

Ty = (i/N7 ¢2(i), ¢3(i), R ¢ps_1(i))

where p; denotes the i-th prime as before. The discrepancy of the Hammersley point set is
O((log N)*=1/N).

2.6.44 (t,m,s)-netsand (t,s)-sequences

Although discrepancy isauseful measure of theirregularity of distribution of aset of points,
it does not always accurately predict which sequenceswill work best for numerical integra-
tion. Recently there has been a great deal of interest in (¢, m, s)-nets and (¢, s)-sequences,
which define the irregularity of distributionin adightly different way. Let E be an elemen-
tary interval in the base b, which is simply an axis-aligned box of the form

STt t;+1
E:H{bTJJ ]b’%‘)

Jj=1

where the exponents k; > 0 areintegers, and 0 < ¢; < b — 1. In other words, each
dimension of the box must be a non-positive power of b, and the box must be aligned to
an integer multiple of its size in each dimension. The volume of an elementary interval is
clearly

AME) = b Zimh |

A (0,m, s)-net in base b is now defined to be a point set P of size N = ™, such that
every elementary interval of volume 1/b~"™ contains exactly one point of P. Thisimplies
that a (0, m, s)-net is distributed as evenly as possible with respect to such intervals. For
example, supposethat P is (0,4, 2)-netin base 5. Then P would contain N' = 625 points
in the unit square [0, 1]%, such that every elementary interval of size 1 x 1/625 contains a
point of P. Similarly, al theintervalsof size1/5 x 1/125,1/25 x 1/25,1/125 x 1/5, and
1/625 x 1 would contain exactly one point of P.
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The more general notion of a (¢, m, s)-net is obtained by relaxing this definition some-
what. Rather than requiring every box of sizeb=" to contain exactly one point, we require
every box of size b~ to contain exactly b' points. Clearly, smaller values of ¢ are better.
The reason for allowing ¢ > 0 isto facilitate the construction of such sequences for more
values of b and s. (In particular, (0,m, s)-netsfor m > 2 canonly existwhens < b+ 1
[Niederreiter 1992].)

A (t, s)-sequence is then defined to be an infinite sequence x4, -, . . . such that for all
m > 0 and k£ > 0, the subsequence

Tkbmg1y -y Lppm+l

isa (t,m,s)-net in the base b. In particular, every prefix xy,...,zy of Size N = "
isa (t,m, s)-net. Explicit constructions of such sequences for various values of b and s
have been proposed by Sobol’, Faure, Niederreiter, and Tezuka (see Niederreiter [1992] and
Tezuka[1999]).

Every (¢, s)-sequence is a low-discrepancy sequence, and every (¢, m, s)-net is alow-
discrepancy points set (provided that ¢ is held fixed while m is increased). Thus these
constructions have the same worst-case integration bounds as for the Halton sequences
and Hammersley points. However, note that (¢, s)-sequences and (t, m, s)-nets often work
much better in practice, because the discrepancy is lower by a significant constant factor
[Niederreiter 1992].

It isinteresting to compare the equidistribution properties of (¢, m, s)-netsto orthogonal
array sampling. For simplicity let t = 0, and let A be an orthogonal array of strength m.
Then in the terminology of (¢, m, s)-nets, orthogonal array sampling ensures that there is
one sample in each elementary interval £ of volume 1/0™, where E hasm sides of length
1/band al other sidesof length one. The Latin hypercube extension of Tang [1993] ensures
that in addition, thereisone samplein each elementary interval E that hasone side of length
1/b™ and all other of length one. Thusthe 1- and m-dimensional projectionsare maximally
stratified. For comparison, the (0, m, s)-net not only achieves both of these properties, it
also ensures that there is one sample in every other kind of elementary interval of volume
1/b™, so that the projections of dimension 2, 3, ..., ¢ — 1 are also stratified aswell as pos-
sible.
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2.6.45 Randomly permuted (t, m,s)-netsand (t, s)-sequences

A significant disadvantage of quasi-M onte Carlo methodsisthat the samplelocationsare de-
terministic. In computer graphics, thisleadsto significant aliasing artifacts[Mitchell 1992].
It also makesit difficult to compute error estimates, since unlike with Monte Carlo methods
we cannot simply take several independent samples.

These difficulties can be resolved by using randomly permuted (¢, m, s)-netsand (¢, s)-
sequences|[Owen 1995b)] (also called scrambled netsand sequences). Theseare obtained by
applying random permutations to the digits of ordinary (¢, m, s)-nets and (t, s)-sequences,
in such away that their equidistribution properties are preserved [Owen 1995b]. The idea
is straightforward to implement, although its analysisis more involved.

Scrambled nets have several advantages. Most importantly, the resulting estimators are
unbiased, since the sample points are uniformly distributed over the domain [0, 1]°. This
makes it possible to obtain unbiased error estimates by taking several independent random
samples (e.g. using different digit permutations of the same origina (¢, m, s)-net). (See
Owen [19974a] for additional discussion of variance estimates.) In the context of computer
graphics, scrambled nets also provide a way to eliminate the systematic aliasing artifacts
typically encountered with quasi-Monte Carlo integration.

Second, it is possible to show that for smooth functions, scrambled nets lead to a vari-

Vi) = 0 (M) ,

ance of
N3

and thus an expected error of O((log V)©*~1/2N=3/2) in probability [Owen 1997b]. This
isan improvement over both the Monte Carlo rate of O(N~'/?) and the quasi-Monte Carlo
rate of O((log N)*~'N~1). Inal cases, these bounds apply to a worst-case function f (of
sufficient smoothness), but note that the quasi-Monte Carlo rate uses a deterministic set of
points while the other bounds are averages over random choices made by the sampling al-
gorithm.

Scrambled nets can improve the variance over ordinary Monte Carlo even when the
function f is not smooth [Owen 1997b]. With respect to the analysis of variance decom-
position described above, scrambled nets provide the greatest improvement on the compo-
nents f;; where the number of variables |U| is small. These functions f;; can be smooth
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even when f itself is not (due to integration over the variablesin S — U), leading to fast
convergence on these components.

2.6.4.6 Discussion

The convergence rates of quasi-Monte Carlo methods are rarely meaningful in computer
graphics, due to smoothness requirements on the integrand and the relatively small sample
sizesthat are typically used. Other problems include the difficulty of estimating the varia-
tion Vi (f), and the fact that (log V)* ! istypicaly much larger than N in practice. The
lack of randomnessin quasi-Monte Carlo methodsisadistinct disadvantage, sinceit causes
aliasing and precludes error estimation.

Hybrids of Monte Carlo and quasi-Monte Carlo seem promising, such as the scrambled
(t, m, s)-nets described above. Although such methods do not necessarily work any bet-
ter than standard Monte Carlo for discontinuous integrands, at |least they are not worse. In
particular, they do not introduce aliasing artifacts, and error estimates are available.

Keller [1996, 1997] has applied quasi-Monte Carlo methods to the radiosity problem
(a specia case of the light transport problem where all surfaces are diffuse). He uses a
particle-tracing algorithm (similar to Pattanaik & Mudur [1993]), except that the directions
for scattering are determined by aHalton sequence. He hasreported aconvergence rate that
isdlightly better than standard Monte Carlo on simpletest scenes. The main benefit appears
to be due to the sampling of the first four dimensions of each random walk (which control
the selection of theinitial point on alight source and the direction of emission).

2.7 Variancereduction I11: Adaptive sample placement

A third family of variance reduction methods is based on the idea of adaptively controlling
the sampledensity, in order to place more sampleswherethey are most useful (e.g. wherethe
integrand is large or changes rapidly). We discuss two different approaches to doing this.
One is adaptive sampling, which can introduce bias unless special precautions are taken.
The other approach consists of two closely related techniques called Russian roul ette and
splitting, which do not introduce bias and are especially useful for light transport problems.
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2.7.1 Adaptive sampling

The idea of adaptive sampling (also called sequential sampling) is to take more samples
wheretheintegrand hasthe most variation. Thisisdone by examining the samplesthat have
been taken so far, and using this information to control the placement of future samples.
Typically this involves computing the variance of the samplesin a given region, which is
then refined by taking more samplesif the variance exceeds agiven threshold. A number of
such techniques have been proposed in graphics for image sampling (for example, see Lee
et a. [1985], Purgathofer [1986], Kajiya[1986], [Mitchell 1987], Painter & Sloan [1989]).

Like importance sampling, the goa of adaptive sampling is to concentrate samples
where they will do the most good. However, there are two important differences. First, im-
portance sampling attempts to place more samplesin regions where the integrand is large,
while adaptive sampling attempts to places more samples where the variance is large. (Of
course, with adaptive sampling we are free to use other criteriaaswell.) A second important
difference isthat with adaptive sampling, the sample density is changed “on the fly” rather
than using a priori information.

The main disadvantage of adaptive sampling is that it can introduce bias, which in
turn can lead to image artifacts. Bias can be avoided using two-stage sampling [Kirk &
Arvo 1991], which consists of first drawing a small sample of sizen from arepresentative
region R C §2, and then using this information to determine the sample size NV for the re-
maining portion Q@ — R of the domain.2 Although this technique eliminates bias, it also
eliminates some of the advantages of adaptive sampling, since it cannot react to unusual
samples encountered during the second stage of sampling.

Another problem with adaptive sampling is that it is not very effective for high-
dimensional problems. The same problems are encountered as with stratified sampling:
there are too many possible dimensionsto refine. For example, if we split the region to be
refined into two pieces along each axis, there will be 2° new regions to sample. If most of
the sampling error is due to variation along only one or two of these axes, the refinement
will be very inefficient.

8Alternatively, two samplesof size n and N could be drawn over the entire domain, where the first sample
is used only to determine the value of NV and is then discarded.
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2.7.2 Russian roulette and splitting

Russian roul ette and splitting are two closely related techniques that are often used in parti-
cletransport problems. Their purposeisto decrease the sample density where the integrand
issmall, and increase it where the integrand is large. Unlike adaptive sampling, however,
these techniques do not introduce any bias. The applications of these methodsin computer
graphics have been described by Arvo & Kirk [1990].

Russian roulette. Russianrouletteisusually applied to estimatorsthat are asum of many
terms:
F=F+.--+Fy.

For example, ' might represent the radiance reflected from a surface along a particular
viewing ray, and each F; might represent the contribution of a particular light source.

The problem with this type of estimator is that typically most of the contributions are
very small, and yet all of the F; are equally expensiveto evaluate. Thebasic ideaof Russian
rouletteis to randomly skip most of the eval uations associated with small contributions, by
replacing these F; with new estimators of the form

F' =

)

qL F; with probability ¢; ,
0 otherwise.

The evaluation probability ¢; is chosen for each F; separately, based on some convenient
estimate of its contribution. Notice that the estimator F is unbiased whenever F; is, since

BIF) = - —BIF]+(1=g)-0
= E[F].

Obvioudly this technique increases variance; it is basically the inverse of the expected
values method described earlier. Neverthel ess, Russian roulette can still increase efficiency,
by reducing the average time required to evaluate F'.

For example, supposethat each F; representsthe contribution of aparticular light source
to the radiance reflected from a surface. To reduce the number of visibility tests using Rus-

sian roulette, we first compute a tentative contribution ¢; for each F; by assuming that the
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light sourceisfully visible. Then afixed threshold ¢ is typically chosen, and the probabili-
tiesq; areset to
¢; = min(1,¢;,/9).

Thus contributions larger than ¢ are always evaluated, while smaller contributions are ran-
domly skipped in away that does not cause bias.

Russian roulette is also used to terminate the random walks that occur particle transport
calculations. (Thiswas the original purpose of the method, as introduced by Kahn — see
[Hammersley & Handscomb 1964, p. 99].) Similar to the previous example, the ideaisto
randomly terminate the walks whose estimated contributions are relatively small. That is,
given the current walk xyx; - - - x;, the probability of extending it is chosen to be propor-
tional to the estimated contribution that would be obtained by extending the path further, i.e.
the contribution of pathsof theformx - - - x;» where &’ > k. Thishasthe effect of terminat-
ing walks that have entered unproductive regions of the domain. In computer graphics, this
technique is used extensively in ray tracing and Monte Carlo light transport calculations.

Splitting. Russianrouletteisclosely related to splitting, atechniquein which an estimator
F; isreplaced by one of the form

k

Y Eij,

j=1

F =

> =

wherethe F; ; areindependent samplesfrom F;. Aswith Russian roulette, the splitting fac-
tor £ is chosen based on the estimated contribution of the sample F;. (A larger estimated
contribution generally correspondsto alarger value of £.) Itiseasy to verify that thistrans-
formation isunbiased, i.e.

E[F]] = E[F].

7

In the context of particle transport calculations, this has the effect of splitting a single
particle into £ new particles which follow independent paths. Each particle is assigned a
weight that isafraction 1 /£ of theweight of the original particle. Typically thistechniqueis
applied when a particle enters a high-contribution region of the domain, e.g. if wearetrying
to measure leakage through areactor shield, then splitting might be applied to neutrons that
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have already penetrated most of the way through the shield.

The basic idea behind both of these techniques is the same: given the current state
XoX7 - - - X3 Of arandom walk, we are free to use any function of this state in deciding
how many samples of x;; will be taken. If we predict that the contribution of the path
X - - - Xpo1 Will be low, then most of the time we will take no samples at al; while if the
contribution is high, we may decide to take several independent samples. If thisis applied
at every vertex, the resulting structure is atree of paths.

In general, Russian roul ette and splitting can be applied to any process where each sam-
pleis determined by a sequence of random steps. We can use any prefix of this sequence to
estimate the importance of the final sample. Thisisthen used to decide whether the current
state should be discarded (if theimportanceislow) or replicated (if the importanceis high).
Although thisidea is superficially similar to adaptive sampling, it does not introduce any
bias.

Russian roulette is an indispensable technique in transport calculations, since it allows
otherwise infinite random walks to be terminated without bias. Splitting is also useful if it
isjudiciously applied [Arvo & Kirk 1990]. In combination, these techniques can be very
effective at directing sampling effort into the most productive regions of the domain.

2.8 Variancereduction IV: Correlated estimators

Thelast family of variance reduction methodswe will discussisbased on theideaof finding
two or more estimators whose values are correlated. So far these methods have not found
significant uses in graphics, so our discussion will be brief.

2.8.1 Antithetic variates

The idea of antithetic variatesisto find two estimators £ and F, whose values are nega-
tively correlated, and add them. For example, supposethat thedesiredintegral is [, f(x) du,
and consider the estimator

F=({fU)+f1-0))/2
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where U isuniformly distributed on [0, 1]. If thefunction f is monotonically increasing (or
monotonically decreasing), then f(U) and f(1 — U) will be negatively correlated, so that
F will have lower variance than if the two samples were independent [Rubinstein 1981,
p. 135]. Furthermore, the estimator F' is exact whenever the integrand is alinear function
(i.e f(x) = ax + ).

This idea can be easily adapted to the domain [0, 1]°, by considering pairs of sample
points of the form

)(1:(U17...,U5> and X2:(1—U1,...,]_—U5).

Again, this strategy isexact for linear integrands. If more than two samples are desired, the
domain can be subdivided into several rectangular regions(2;, and a pair of samples of the
form above can be taken in each region.

Antithetic variates of this type are most useful for smooth integrands, where f is ap-
proximately linear on each subregion 2;. For many graphics problems, on the other hand,
variance ismainly due to discontinuities and singularities of the integrand. These contribu-
tionstend to overwhel m any variance improvements on the smooth regions of theintegrand,
so that antithetic variates are of limited usefulness.

2.8.2 Regression methods

Regression methods are a more advanced way to take advantage of several correlated esti-
mators. Suppose that we are given several unbiased estimators £, .. ., F), for the desired
guantity I, and that the F; are correlated in someway (e.g. because they use different trans-
formations of the same random numbers, as in the antithetic variates example). The idea
is to take several samples from each estimator, and apply standard linear regression tech-
niquesin order to determine the best estimate for I that takes all sources of correlation into
account.

Specifically, the technique works by taking /N samples from each estimator (where the
j-th samples from F; is denoted F; ;). We then compute the sample means
N
Y F; fori=1,...,n,

J=1

ji:
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and the sampling variance-covariance matrix V, asquare n x n array whose entries are

1 N

Vie = v 1 1;1 (Fir = L) (Fjp — 1) -

Thefinal estimate F' isthen given by
F = (X*V1X)"'X*VI, (2.33)

where X* denotesthetransposeof X, X = [1...1]* isacolumnvector of lengthn, andT =
[f 1o, fn]* isthe column vector of sample means. Equation (2.33) isthe standard minimum-
variance unbiased linear estimator of the desired mean I, except that we have replaced the
true variance-covariance matrix V by an approximation V. Further details can be found in
Hammersley & Handscomb [1964].

Note that thistechnique introduces some bias, dueto thefact that the same random sam-
ples are used to estimate both the sample means I; and the variance-covariance matrix en-
tries V; ; (which are used to weight the 7;). This bias could be avoided by using different
random samples for these two purposes (of course, thiswould increase the cost).

The main problem with regression methodsisin finding a suitable set of correlated esti-
mators. If the integrand has discontinuities or singularities, then simple transformations of
theform f(U) and f(1 — U) will not produce a significant amount of correlation. Another
problem isthat this method requires that a substantial number of samples be taken, in order
to estimate the covariance matrix with any reasonable accuracy.
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Chapter 3
Radiometry and Light Transport

In this chapter, we describe the domains, quantities, and equations that are used for light
transport calculations. Many of these concepts have their originsinradiometry, afield that
studies the measurement of electromagnetic radiation. Radiometry is a natural foundation
for graphics, because light is part of the electromagnetic spectrum.

We start by discussing the mathematical representation of the scene model. We then
discuss the phase space and trajectory space, and show how radiometric quantities can be
defined in terms of photon events. Next we give definitions of the quantitiesthat are needed
for light transport cal culations, including power, irradiance, radiance, and spectral radiance.
We al so discuss the concepts of incident and exitant radiance functions.

We then describe how the light transport problem is formulated mathematically. This
startswith the definition of the bidirectional scattering distribution function (BSDF), which
gives a mathematical description of the way that light is scattered by a surface. We show
how the BSDF is used to define the basic light transport equations, and we give a brief
introduction to adjoint methods and bidirectional algorithms. We also explain why non-
symmetric BSDF s require special treatment in bidirectional algorithms, and we define the
useful concept of an adjoint BSDF. These ideas will be of central importance for the next
several chapters.

Appendix 3.A discusses field and surface radiance functions [Arvo 1995], and com-
pares them with the incident and exitant radiance functions that we use instead. Finaly,
Appendix 3.B gives the details of our measure-theoretic radiometry framework, in which

75
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we apply the tools of measure theory to define radiometric concepts more precisely. The
maintask isto define and use suitable measure functions, extending thework of Arvo [1995,
Chapter 2].

A good introduction to radiometry is the book by McCluney [1994]. Other good ref-
erences include [Nicodemus 1976], [Arvo 1995], [Cohen & Wallace 1993], and [Glassner
1995]. Note that our development is quite different than the standard treatments, due to the
emphasis on measure theory.

3.1 Domainsand measures

We assume that the scene geometry consists of a finite set of surfaces inIR?, whose union
isdenoted M. Formally, each surface is a piecewise differentiable two-dimensional mani-
fold, possibly with boundary. For technical reasons, we require each manifold to be aclosed
set; that is, every manifold A/ must include its boundary 0. This prevents gaps between
abutting surfaces (e.g. consider a cube formed from six squares). Note that M itself is not
necessarily a manifold. For example, consider two spheres that touch at a point, or a box
sitting on atable.

The surfaces divide IR* into a number of connected cells, each filled with a non-
participating medium with a constant refractive index (i.e. volume absorption, emission,
and scattering are not allowed).! It is possible that some surfaces do not belong to any cell
boundary (e.g., apolygon floating in space).

We define an areameasure A on M in the obviousway,? so that A(D) denotesthe area

Iwith this convention, all objectsarehollow inside; a“solid” object issimply an empty cell with an opaque
boundary. This representation is actually used by many rendering systems. Alternatively, acell could be al-
lowed to contain a perfectly absorbing medium. However, thiswould regquire some extra care with definitions,
for example when defining the visibility and ray-casting functions used in Chapter 4.

2Given that M isthe union of manifolds My, ..., My, we define A(D) asthe sum of theareas A;(D N
M), where A; isthe usual area measure on the manifold M,. The measurable sets D C M are defined by
the requirement that all D N M, are measurable. We aso require that the intersection between any pair of
surfaces M, and M ; isaset of measure zero. In practice, this means that when the intersection between two
surfaces has non-zero area (e.g. a cube sitting on a table), the rendering system must arbitrarily choose one
surface over the other. This ensures that aimost every point of M (up to a set of area measure zero) has a
unique set of surface properties.
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of aregion D C M. The notation

[, 76 dA)

denotes the Lebesgue integral of the function f : M — IR with respect to surface area.

Directions are represented as unit-length vectorsw € R*. The set of al directionsis
denoted S, the unit spherein IR*. Let o be the usual surface area measure on S2. Given
aset of directions D C S?, the solid angle occupied by D issimply o(D). Similarly, the
solid angle subtended by a surface P from apoint x is determined by projecting P onto the
unit sphere centered at x, and computing the measure of the resulting set of directions.

Another useful concept is the projected solid angle [Nicodemus 1976, p. 70], which
arisesin determining theirradiance (power per unit area) received by surface. Given apoint
x € M, let N(x) bethesurfacenormal at x. Givenaset of directions D C S?, theprojected
solid angle measure o7, is defined by

o (D) = /D |w - N(x)|do(w) . (3.1

X

The factor w - N (x) is often written as cos 6, where ¢ isthe polar angle of w (i.e. the angle
between w and the surface normal).

The name projected solid angle arises from the following geometric interpretation. Let
T,,(x) be the tangent space at the point x, i.e. the space of vectorsin IR? that are perpen-
dicular to the surface normal:

T,(x) = {y e R’ |y-N(x) =0}.

(Unlike the more familiar tangent plane, the tangent space passes through the origin. Thus
it isalinear space rather than an affine one.) The tangent space divides S? into two hemi-
spheres, namely the upward hemisphere

H:(x) = {we S |w-N(x)>0} (3.2
and the downward hemisphere

H? (x) = {we S |w-N(x)<0}.
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Now given aset of directions D contained by just one hemisphere, the projected solid angle
can be obtained by simply projecting D orthogonally onto the tangent space, and then find-
ing the area of the resulting planar region. For example, supposethat D isthe entire upward
hemisphere7{% . The corresponding projected regionisaunit disc, sowe haveai(%i) =T.

3.2 Thephase space

Radiometric quantities can be defined within the more general framework of transport the-
ory, which studies the motion of particlesin an abstract setting. Each particle is character-
ized by a small number of parameters, which vary as afunction of time. Typical particles
such as neutrons or gas molecules can be represented by their position and velocity, for a
total of 6 degrees of freedom. The state of a system of /V particlesis then represented as
a6/N-dimensiona vector, which can be thought of as a point in the 6 V-dimensional phase
space containing all possible system states.® The evolution of the system over time corre-
sponds to a one-dimensional curve in phase space.

We now consider how this applies to light transport. Under the assumption that light
is unpolarized and perfectly incoherent, the state of each photon can be represented by its
position x, direction of motion w, and wavelength A [Nicodemus 1976, p. 8]. Thus for a
system of NV photons, the phase space would be 6/V-dimensional.

However, for particlesthat do not interact with each other (such as photons), it is more
useful tolet the phase space correspond to the state of asingle particle. With thisconvention,
the phase space v is only 6-dimensional, and can be expressed as

Y = R*x S x RY,

wherelR* denotesthe positivereal numbers (corresponding to the range of allowablewave-
lengths). A system of N photonsis represented as a set of NV points in this 6-dimensional
space, whose positions vary as afunction of time.

Radiometric quantities can then be defined by counting the number of photonsinagiven

3For many problemsthe natural phase spaceis not really 6 N -dimensional, since physical laws may cause
certain propertiesof theinitial stateto be preservedfor all time (e.g., thetotal energy). Thisrestrictsthe phase
space to be alower-dimensional manifold within the 6 NV -dimensional Euclidean space defined above.
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region of the phase space, or measuring their density with respect to one or more parameters.
The most basic of these quantities is the photon number N,,, which ssimply measures the
number of photons in a given phase space region [McCluney 1994, p. 26]. For example,
we could count the number of photonsin a given spatial volume Q C IR? at afixed time
to, With no restrictions on the direction or wavelength parameters. This corresponds to the
region Q2 x S? x R" of the phase space ).

3.3 Thetrajectory space and photon events

We generalize the notion of a radiometric measurement further, by considering the time di-
mension explicitly. If the phase space positions of all photons are graphed over time, we
obtain a set of one-dimensional curves in the trajectory space

U =Rx,

where thefirst parameter represents time. Radiometric measurements are defined by speci-
fying a set of photon events along these curves, and then measuring the distribution of these
eventsin various ways.

A photon event isasinglepoint in thetrajectory space V. Some events have natural def-
initions; for example, each emission, absorption, or scattering event correspondsto asingle
point along a photon trajectory.* Other events can be defined artificially, usually by speci-
fying asurface in W that intersects the photon trajectories at a set of points. For example,
we could define the events to be the photon states at a particular timet,. This corresponds
to intersecting the trgjectories with the plane ¢ = ¢, in the trgjectory space ¥. Similarly,
given an arbitrary plane P in IR?, we could define a photon event to be a crossing of P,
corresponding to an intersection with the surface R x P x 8% x R in trgjectory space.

Oncethe photon eventshave been defined, we areleft with aset of pointsinthetrajectory

“4Infact, each scattering event correspondsto two points a ong the photon trgjectory, since the w parameter
hasdifferent valuesbefore and after the callision (corresponding to adiscontinuity inthetragjectory). Similarly,
thewavel ength parameter A could change discontinuously in afluorescent material. Thus, we must distinguish
between in-scattering and out-scattering events, according to whether we measure the photon state before
or after the collision. This is the basis for distinguishing between incident and exitant radiance functions,
discussed in Section 3.5.
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space V. These points may be distributed throughout the whol e space ¥, or they may lie on
some lower-dimensional manifold (e.g. if the photon events were defined as an intersection
with a surface). To define aradiometric quantity, we then measure the distribution of these
events with respect to a suitable geometric measure.

For this purpose, it is convenient to assume that the events are so numerous that their
density can be modeled by continuous distributions rather than discrete ones. Rather than
counting the photon events in a given region of the trajectory space, for example, we de-
termine their total radiant energy @ (measured in joules [J]). We will ignore the discrete
nature of photons and assume that ) can take on any non-negative real value. (Note that
each photon has an energy of hv, where i isPlanck’s constant, and v = 1/ isfrequency.)

3.4 Radiometric quantities

We now discuss some of the most important radiometric quantities. Each of these is de-
fined by measuring the distribution of energy with respect to one or more parameters. The
discussion hereisinformal; a more detailed development is given in Appendix 3.B.

341 Power

Radiant power is defined as energy per unit time,

dQ

o = =
dt ’

(3.3)

and is measured in watts [W = J - s7!]. For example, thisis the quantity used to describe
the rate at which energy is emitted or absorbed by afinite surface S C R®.
The notation (3.3) could be written more precisely as

a) = “0.

which makes it clear that  and () are functions of time. Obviously Q must be defined asa
function of time, in order for the idea of differentiating it to make sense. In general, thisis
done by defining Q(¢) to measure the energy of the photon events in some region D(t) of
trajectory space, where theregion D(t) grows with time. For example, suppose that we are
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counting emission events, and consider the region
D(t) = [0,t] x S x S* x R*,

where S C R* isafinite surface. In this case, Q(t) represents the total energy emitted by
S over thetime interval [0, ¢], so that ®(¢) = dQ(t)/dt measures the energy emission per
unit time (at each timet).

However, we will usually ignore these subtleties. Most often we are concerned with
systemsin equilibrium, so that the density of photon eventsin phase space does not change
with time. In this case, the ¢ parameter can be omitted from the notation, as in equation
(3.3).

3.4.2 Irradiance

Continuing with our discussion of radiometric quantities, irradianceis defined as power per

unit surface area:
dd(x)

(x) = dA(x)’

(3.4)

with units of [W - m~2|. It is always defined with respect to a point x on a surface S (ei-
ther real or imaginary), with a specific normal N(x). The term irradiance also generally
implies the measurement of incident radiation, on one side of the surface only (i.e. light
incident from the upward hemisphere 7% (x)). When light is leaving the surface, through
either emission or scattering, the preferred term isradiant exitance (denoted by the symbol
M) [Nicodemus 1978, p. 11]. Another common term isradiosity, which was introduced by
Moon [1936] and popularized in the heat transfer literature (cf. Heckbert [1992]).

3.4.3 Radiance

For light transport calculations, by far the most important quantity isradiance, defined by

d*®(x,w)

Lixw) = dAL(x) do(w)’

(3.5)
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where A} isthe projected area measure, which measures area on a hypothetical surface per-
pendicular tow. That is, to measure the radiance at (x, w), we count the number of photons
per unit time passing through a small surface d A7, (x) perpendicular to w, whose directions
are contained in a small solid angle do(w) around w. Radiance is defined as the limiting
ratio of the power d® represented by these photons, divided by the product dA (x) do(w).
The corresponding unitsare [W - m™2 - sr™!].
When measuring the radiance leaving a rea surface.S, a more convenient equation is
given by ,
d*d(x,w
Lixw) = |w - N(x)| C(ZA’(X>> do(w)’ (36)

whereasbefore A istheareameasureon S, and N (x) isthesurfacenormal at x. Thisrelates

the projected area d A_, to the ordinary areadA, according to®

dA-(x) = |w-N(x)|dA(x). (3.7)

w

Alternatively, the|w-N(x)| factor can beabsorbed into the projected solid angle measure

defined above, leading to
> (x, w)
dA(x) dos(w)

This is the most useful definition when dealing with radiance on real surfaces, because it

L(x,w) = (3.8)

uses the natural areameasure A.

3.4.4 Spectral radiance

Carrying this one step further, spectral radiance L, is defined by

PO (x,w, \)
dA(x) dos(w) d\’

Ly(x,w,\) = (3.9

that is, Ly, = dL/d\. The units are typically givenas [W - m 2 - st ! - nm ], where
the use of nanometers for wavelength helps to avoid confusion with the spatial variables
[Nicodemus 1976, p. 49]. Other spectral quantities can be defined similarly, e.g. spectral

SMore precisely, the projected areameasure is defined by 45 (D) = Jp lw - N(x)| dA(x), where D isan
arbitrary region of S.
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power isdefined by @, = d®/dA.
Spectral radianceis often considered to be the fundamental radiometric quantity, in that
many other common quantities can be derived from it. For example, radiance is given by

L(x,w) = /OO Ly(x,w,\)d\,
0

from which irradiance can be obtained by
Ex) = L(x,w dai w).
(x) /i(x) (%, w) (w)

In this dissertation, we will most often deal with spectral radiance L,. However, for
conciseness we will usually just refer to thisas “radiance” and use the symbol L. Thisisa
slight abuse of terminology, but it is common practice in computer graphics.

Many other radiometric quantities have been defined, but we will not need them here.
The manual by Nicodemus [1976] is an excellent reference on this topic, although some of
the notation has been superceded by the USA Standard Nomenclature and Definitions for
[lluminating Engineering [American National Standards Institute 1986].

3.5 Incident and exitant radiance functions

A radiance function is simply a function whose values correspond to radiance measure-
ments.® Most often, we will work with functions of the form

L:Mx8 =R,

where M isthe set of scene surfaces (Section 3.1). Occasionally, radiance functions of the
form
L:R*x 8> — R

will also be useful. Note that we allow negative valuesfor L(x, w) (which have no physical
meaning), to ensure that the set of all radiance functionsis a vector space.

6As mentioned in Section 3.4, we will often use the terms radiance and spectral radianceinterchangeably,
ignoring the extra A parameter.
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We will distinguish between incident and exitant’ radiance functions, according to the
interpretation of the w parameter. An incident function L;(x, w) measures the radiance ar-
riving at x from the direction w, while an exitant function L, (x, w) measures the radiance
leaving from x in the direction w. In free space, these quantities are related by

Li(x,w) = Lo(x,—w). (3.10)

However, at surfaces the distinction is more fundamental: L; and L, measure different
sets of photon events, corresponding to the photon statesjust before their arrival at the sur-
face, or just after their departure respectively. The relation between L; and L, can be quite
complex, since it depends on the scattering properties of the surface.

The difference between incident and exitant radiance can be understood more precisely
in terms of the trgjectory space V. Recall that each photon traces out a one-dimensional
curve in this space, namely the graph of the function (x;, w;, A;)(t) over al valuesof ¢. To
measure radiance, we define a photon event to be an intersection of one of these curveswith
thesurface P = R x M x 8% x R" in trajectory space. Our key observation is that this
curveisnot continuous at IP, since scattered photonsinstantaneously change their direction
and/or wavelength. (A continuous curve would correspond to a photon that passes through
M without any change.) Similarly, the curvesfor emitted and absorbed photonsare discon-
tinuous, since they are defined on only one side of P.

We now observe that L; and L, measure events that are limit points of trgjectories on
opposite sides of the surface P. Each event (¢;, x;,w;, \;) measured by Z; is the limit of
atrajectory defined for ¢ < t;, while an event measured by L, isthe limit of atrgectory
defined for ¢ > ¢;. Thisgives a simple and precise way to differentiate between incident
and exitant radiance.

Notethat incident and exitant radiance functionsare quite similar to thefield and surface
radiance functions proposed by Arvo [1995] (the main differenceisthat thedirection of w is
reversed for field radiance as compared to incident radiance). Appendix 3.A discussesthese
two approaches and explains the advantages of incident and exitant radiance functions.

"Nicodemus prefersthe spelling exitent, and states that this term was coined by Richmond (cf. [Nicodemus
1976, p. 25]). Our use of exitant stems from [Christensen et a. 1993], where the term appears to have been
re-invented.
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Figure3.1: Geometry for defining the bidirectional scattering distribution function (BSDF).

3.6 Thebidirectional scattering distribution function

The bidirectional scattering distribution function (BSDF) is a mathematical description of
thelight-scattering propertiesof asurface. Letx € M beafixed point on the scene surfaces,
and consider the radiance leaving x in a particular direction w, (see Figure 3.1). We will
denote this L, (w, ), dropping x from our notation. In general, the radiance L, (w,) depends
ontheradiancearriving at x fromall directions. For now, wefix aparticular directionw;, and
consider theincident light from an infinitesimal cone around w;, where the cone occupies a
solidangleof do(w;). Thislight strikesthe surface at the point x, and generatesan irradiance
equal to
dE(w;) = Li(w;) do (w;) .

Thelight isthen scattered by the surfacein all directions; welet dL,(w,) represent the con-
tribution made to the radiance leaving in direction w,,.

It can be observed experimentally that asd E'(w;) isincreased (by increasing either L; or
do(w;)), thereisaproportional increase in the observed radiance d L, (w, ):

dLo(w,) x dE(w).

This corresponds to the fact that light behaves linearly under normal circumstances (recall
Section 1.5.3).
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The BSDF f,(w; — w,) isnow simply defined to be this constant of proportionality:

_ dLo(wo)  dLo(wo)
fi(wi—w,) = JBw) — Liw) dot (@) (3.11)

Inwords, f;(w; — w,) isthe observed radiance leaving in directionw,, per unit of irradiance
arriving from w;. The notation w; — w, Symbolizesthe direction of light flow.

3.6.1 Thescattering equation
By integrating the relationship
dLo(wo) = Li(w;) folwi—wo) do (w;)

over all directions, we can now predict L,(w,). Thisis summarized by the (surface) scat-
tering equation,®
Lofwa) = [, Lifw) folwi o) do (i) (3.12)
S2

This equation can be used to predict the appearance of the surface, given a description of
the incident illumination.

3.6.2 TheBRDF and BTDF

The BSDF is not a standard concept in radiometry.® More typically, the scattered light is

subdivided into reflected and transmitted components, which are treated separately. This

leadsto the definition of the bidirectional reflectance distribution function (BRDF), and the

bidirectional transmittance distribution function (BTDF), denoted f. and f; respectively.
The BRDF is obtained by simply restricting f; to asmaller domain:

fHExHE SR,

8The corresponding equation for one-sided, opaque surfaces is called the reflectance equation [Cohen &
Wallace 1993, p. 30].

9The name appears to have been introduced by Heckbert [Heckbert 1991, p. 26]. Previously, he used the
term bidirectional distribution function (BDF) [Heckbert 1990], however we feel that this term is more ap-
propriate for a category of such functions, containing the various B* DF's as members.
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where H? and H? are often called the incident and reflected hemispheres respectively. In
fact, both symbols refer to the same set of directions (2 = H?), which can be either the
upward hemisphere 742, or its complement 2.

The BTDF is defined similarly to the BRDF, by restricting f, to adomain of the form

fi i HE X HE = R,

where the transmitted hemisphere 42 = —#? isthe complement of H?. Asbefore 77 can
represent either the upward hemisphere 742 , or its complement #2 .

Thus, we see that the BSDF is the union of two BRDF's (one for each side of the sur-
face), and two BTDF's (one for light transmitted in each direction). Its main advantage is
convenience: we only need to deal with one function, rather than four. The BSDF allowsus
to write equationsthat are simple and yet general, capable of describing the scattering from
any kind of surface. Surfaces that are purely reflective or transmissive are smply special
cases of thisformulation. In addition, the BSDF isactually easier to define, since we do not
need to specify the hemispherical domains needed by the BRDF and BTDF.

Properties of the BRDF. The BRDF's that describe real surfaces are known to have a
number of basic properties. For example, they are symmetric:

Lilwi—w) = filwo—wi) for al w;, w, . (3.13)

Because of the symmetry, the notation f; (w; <+ w,) is often used. Another property shared
by physical BRDF's isenergy conservation, as embodied by the condition

/‘MM%%MEW)SI for all w; € H2 . (3.14)
H2

Further explanation of BRDF s and their properties can befound in [Nicodemuset al. 1977,
p. 5] or [Cohen & Wallace 1993, p. 28].

Note that these simple conditions are unique to reflection, and do not always apply to
surfaces that transmit light. Thus, it cannot be assumed that BSDF's or BTDF's satisfy the
simplerules above. We will investigate the correct generalization of these propertiesto ar-
bitrary surfacesin Chapter 6.
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3.6.3 Angular parameterizations of the BSDF

It is common to write BSDF's in terms of polar and azimuthal angles, rather than unit di-
rection vectors. We will use this parameterization later in this chapter, to derive the scaling
of radiance at arefractive interface (Section 5.2). We show how the two parameterizations
are related, and summarize the advantages of the unit vector form.

In the angular parameterization, a directionw € S? is represented as a pair of angles
(0, ¢). The polar angle & measures the angle between w and the normal IN, while the az-
imuthal angle ¢ measures the angle between w and afixed direction T lying in the tangent
space at x. The angular and vector representations are thus related by

cosf = w-N,

cosp = w-T.

To use this parameterization, we must also know how the angle measures o and o™ are
represented. The solid angle o corresponds to

do(w) sin 0 df d¢ (3.15)

= dlcosfdo,
while the projected solid angle o can be written in a number of forms:

do (w) = |cosf)| sinfdfde (3.16)
|cos 6| d! cos 6 do

= sinfdsinfdo

(1/2) d! cos* 0 do

= (1/2)dsin’*0do.

With the angular parameterization, the scattering equation (3.12) thus becomes

Lollor0) = [ [ (0,00 £0, 00,00, 00) lcos O sinbudbidos,  (317)

where the other representations (3.16) for the projected solid angle could also be used.
Although the angul ar representation iscommon, there are good reasonsto prefer the unit
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vector representation w € S?. First, note that (6, ¢) isalocal representation of direction,
since the angles # and ¢ depend on the surface normal. When more than one surface point
isinvolved, it is much more convenient to work with direction vectors. Second, the (6, ¢)
representation creates the impression that many formulas involve trigonometric functions,
when in fact they are usually implemented with dot products. Finally, the angular represen-
tation depends on an extra parameter (the tangent vector T'), which must be chosen arbitrar-
ily since it has no physical significance.

3.7 Introduction to light transport

This section reviews the main concepts of light transport, without getting into too much
detail. (Theseideaswill be defined more precisely inthe next chapter, wherewereformul ate
light transport in terms of linear operators.) We discuss the measurement, light transport,
and importance transport equations. We also outline the ideas of bidirectional methods for
the light transport problem, and explain why they are often the most efficient methods for
itssolution. Finally, we explain why bidirectional algorithms need to evaluate BSDF swith
special care, and we define the useful concept of an adjoint BSDF.

3.7.1 The measurement equation

The goal of light transport isto compute a set of real-valued measurements 14, . . ., 1,,. For
example, in alight transport algorithm that computes an image directly, each measurement
I; represents the value of asingle pixel, and M isthe number of pixelsin the image.

Each measurement corresponds to the output of a hypothetical sensor that responds to
theradiance L;(x, w) incident upon it. The response may vary according to the position and
direction at which light strikes the sensor; this is characterized by the sensor responsivity
W, (x,w). Thetotal responseis determined by integrating the product 1, L;, according to

I = /sta Wa(x, ) Li(x, w) dA(x) dos(w) . (3.18)

Thisis called the measurement equation. Note that there is actually one equation for each
measurement 1, each with a different responsivity function 1. (although we will usually
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drop the superscript). Also note that we have assumed that the sensors are modeled as part
of the scene M, in order that we can integrate over their surface.

3.7.2 Thelight transport equation

Generally, we are most interested in measuring the steady-state or equilibrium radiance
function for the given scene.l” It isconventional to solvefor the exitant version of thisquan-
tity, L., from which the incident radiance L; can be obtained using

Li(x,w) = Lo(x,(x,w), —w) .

Here x,,(x,w) is the ray-casting function, which returns the first point of M visible from
x indirection w.
We can express L, as the sum of emitted radiance L., and scattered radiance L, :

Lo = L+ Log.

The emitted radiance function L. (x, w) isprovided as part of the scene description, and rep-
resents all of the light sourcesin the scene. On the other hand, L, ; is determined using the
scattering equation (3.12), according to

Los(x,w,) = / Li(x, w;) fs(x,wi%wo)dai(wi).
S2

By putting these equationstogether, we get acompl ete specification of thelight transport
problem. The most interesting feature isthat L, and L; have been defined in terms of each
other; commonly their definitions are combined to obtain

Lo(x,wo) = Lo(x,w,) + /82 Lo (%, (%, wi), —wi) f(X, wi— w,o) do (wi) (3.19)

which is known as the light transport equation. Since L; does not appear in this equation,
the subscript on L, isusually dropped. Theform of thisequation naturally leadsto recursive
solutions (the essence of traditional Monte Carlo methods).

10Since light travels so much faster than the everyday objects around us, equilibrium is achieved very
quickly after any changes to the environment. Effectively, the world we perceive is always in equilibrium
(with respect to light transport).
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3.7.3 Importance and adjoint methods

As we have presented them, the transport rules apply to the scattering of light, as emitted
by the sources. However, the transport rules can be applied equally well to the sensors, by
treating the responsivity 17, (x, w) asan emitted quantity. In this context, 1, (x, w) iscalled
an emitted importance function, since W, specifies the “importance” of the light arriving
along each ray to the corresponding measurement /.

Thisideaisthe basis of adjoint methods, which apply the transport rules to importance
rather than radiance. These methods start with the emitted importance W, (x, w), and solve
for the equilibrium importance function W (x, w), according to the importance transport
eguation

Wi(x,w) = Wo(x,w)+ . W (%, (X, wi), —wi) f(X, wo = wi) doy (w;) - (3.20)
Thisequation isvirtually identical to the light transport equation (3.19), except that the di-
rectional arguments to the BSDF have been exchanged.

Given the equilibrium importance W, measurements are computed by integrating the
product W L. (smilar to (3.18)). Note that while there is only one equilibrium radiance
function, there can be many different equilibrium importance functions (one for each sen-
sor). Thisisan important difference between direct and adjoint methods.

3.7.4 Bidirectional methods

Many recent algorithms combine features from both of these approaches, leading to bidi-
rectional light transport methods. The computation is guided by the viewing information
(sensors), aswell as the lighting information (sources). This alows these algorithmsto be
more efficient, since they can do less work in regions that are dark or that are not visible.
This concept issimilar to certain planning problemsin artificial intelligence, where the ob-
jectiveistoget fromaninitial statetoagoal, given someset of possibleactions. Itispossible
to reduce the search complexity by simultaneously working forward from the initial state,
and backward from the goal, until the two searches meet somewhere in the middle.

Bidirectional algorithms can appear in a number of different forms. Importance-driven
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Figure 3.2: Path tracing and particle tracing sample the BSDF in different ways. (a) For
path tracing, the directionw,, isgiven (it points toward the previous vertex on apath leading
toasensor). The path isextended by sampling adirectionw; according to the BSDF. (b) For
particle tracing, the directionw; is given (pointing along a path toward a light source), and
the path is extended by sampling a directioncw,.

methods use viewing information to guide mesh refinement, by increasing the mesh resolu-
tion in regionswhere the equilibrium importanceishigh (since these regions have the great-
est influence on the desired set of measurements). With Monte Carlo approaches, bidirec-
tional methods often combine path tracing, where the transport equation is sampled starting
from the sensors, and particle tracing, where sampling begins at the light sources.

In one way or another, almost all recent light transport algorithms have taken a bidi-
rectional approach. These include finite element approaches [Smits et al. 1992, Schroder
& Hanrahan 1994, Christensen et al. 1996], multi-pass methods[Chen et al. 1991, Zimmer-
man & Shirley 1995], particletracing algorithms[Heckbert 1990, Pattanaik & Mudur 1995,
Shirley et al. 1995, Jensen 1996], and bidirectional path tracing [Lafortune & Willems 1993,
Veach & Guibas 1994, Veach & Guibas 1995].

3.7.5 Sampling and evaluation of non-symmetric BSDF’s

Scene model s often contain materialswhose BSDF isnot symmetric, i.e. for which f, (w; —
W) # fo(w, — wj). Great care must be taken when such materials are used with bidi-
rectional algorithms, because in this case the transport rules for light and importance are
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(a) The normal BSDF f. (b) The adjoint BSDF f.".

Figure 3.3: By adopting the convention thatw; is always the sampled direction, the BSDF
fs and its adjoint f.* are used for different purposes. (a) The BSDF f;(w; — w,) is used for
radiance evaluation, and to scatter importance particles. (b) The adjoint BSDF f.* (w; — w,)

is used for importance evaluation, and to scatter light particles.

different. Formally, this can be seen by noting that the light transport equation (3.19) and
the importance transport equation (3.20) are identical, except that the directional arguments
to the BSDF have been exchanged. Thus if the BSDF is not symmetric, then light and im-
portance satisfy different transport equations. From another point of view, recall that the
BSDF was defined in terms of light propagation: light flows from the incoming direction w;
to the outgoing direction w,. Thusimportance flowsfromw, to w;, sinceitistransportedin
the opposite direction aslight. Similarly, different scattering rules must be used for particle
tracing and path tracing to obtain correct results when non-symmetric BSDF's are present
(seeFigure3.2). Thus, bidirectional algorithms must take care when evaluating or sampling
the BSDF, to ensure that w; and w, are ordered correctly.

In the next few chapters, we will study non-symmetric BSDF's and their consequences
for bidirectional algorithmsin detail.

3.7.6 Theadjoint BSDF

Given an arbitrary BSDF f;, the adjoint BSDF f* is defined by

fFwi—=wo) = filwo—w) for al w;,w, € S?. (3.21)
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The main advantage of the adjoint BSDF is that it lets the importance transport equation
(3.20) have the same form as the light transport equation (3.19). Recall that the only dif-
ference between these two equations is that the arguments to the BSDF are exchanged
(fs(wo — wy) instead of f,(w; — w,)). By using the adjoint BSDF f* in the importance
transport equation, this difference is eliminated: the two equations have exactly the same
form, but they use different BSDF's (see Figure 3.3.)

The adjoint BSDF also provides a useful convention for sampling. Recall that in path
tracing, we sample the BSDF to determine the incident directionw; (sincew, isgiven). We
extend thisidea, by adopting the convention that w; is always the sampled direction during
arandom walk. Werefer to the opposite situation (wherew; isprovided, and w, is sampled)
as sampling the adjoint BSDF. For example, according to this convention the adjoint BSDF
is used to scatter light particles.

We also mention two other techniques that can be used in bidirectional algorithms. The
first of these isimportance particletracing, in which particles are emitted from the sensors
and scattered throughout the environment, in order to obtain a set of samplesthat represent
the equilibrium importance. This processis similar to ordinary particle tracing, except that
importance is used instead of light. Thisimplies that importance particles should be scat-
tered using the ordinary BSDF f,. The second techniqueisimportance evaluation, inwhich
the equilibrium importance on aray (x,w) isestimated by recursively sampling the impor-
tance transport equation. Thisis similar to the evaluation of radiance using path tracing,
except that the adjoint BSDF f* isused instead of f.

To summarize, the adjoint BSDF is used for importance evaluation and for scattering
light particles (i.e. sampling processes that start at a light source), while the normal BSDF
isused for radiance evaluation and for scattering importance particles (sampling processes
that start at a sensor). These rules will be justified formally in Chapter 4.
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Appendix 3.A Field and surface radiance functions

In this appendix we consider thefield and surface radiance functions defined by Arvo [1995, p. 28],
and compare them with the incident and exitant radiance functions described in Section 3.5. Basi-
caly, field radiance L; issimilar to incident radiance L;, while surface radiance L is similar to exi-
tant radiance L. The main difference isthat Ly and L are defined only in the context of one-sided
(reflective) surfaces, which allows them to be defined as two halves of a single radiance distribution
L.

To define field and surface radiance precisely, letS be a surface bounding an opagque object, and
consider theradiance distribution L(x,w) at apointx € S. Arvo[1995] observes that since scatter-
ing occurs on only oneside of S, the direction of w can be used to distinguish incident photons from
exitant ones: if w isin the upward hemisphere #2 (x), then L(x,w) refers to radiance leaving the
surface, and otherwise L(x, w) refersto radiance arriving at the surface. Applying this observation,
he proposed that L (x, w) is naturally partitioned intosurface radiance Ly(x,w) and field radiance
L¢(x,w), according to whether w - N(x) is positive or negative respectively.

However, there are severa important differences between incident/exitant radiance and
field/surface radiance. First, the sense of the direction parameterw is reversed for Ly as compared
to L;:

Li(x,w) = Li(x,—w).

Thefield radiance definition Ly woul d appear to be more natural, sincew corresponds to the direction

of travel of the photons. However, theZ; definition has two important advantages. At reflective sur-
faces, it corresponds to the convention assumed by most BRDF formulas, wherew; and w,, both point

outward. More significantly, the L; definition causes certain natural transport operators to become
self-adjoint (namely the G and K operators defined in Section 4.3), which increases the symmetry
between the equations governing light and importance transport.

A second differenceisthat L; and L,, are defined for two-sided surfaces, e.g. thosethat allow both
reflection and transmission. For these surfaces,w cannot be used to distinguish between incident and
exitant photons, since L; and L, are both defined for all w € S?. Instead, the two sets of photon
events must be distinguished using the time dimension, as we have outlined above.

Finally, field and surface radiance are defined only at surfaces, while incident and exitant radi-
ance are defined in space as well. (The distinction betweenZ; and L, is till useful in this context,
since it can be used to define self-adjoint operators for volume scattering.)
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Appendix 3.B Measure-theoretic radiometry

Typicaly, radiometric quantities are defined using “infinitessimals’ and limit arguments. Arvo[Arvo
1995, Chapter 2] has taken a different approach, by proposing aset of axiomsthat correspond to the
observable behavior of photons, and then deriving radiometric quantities using the tools of measure
theory. Hisanalysisfocused onthe spatial distribution of steady-state, monochromatic radiation, and
led to a measure-theoretic definition of thephase space density (defined below). In this section we

show how to extend his techniques to a more general class of radiometric quantities: for example,
we give measure-theoretic definitions of spectral radiance and spectral radiant sterisent

3.B.1 Measure spaces

A measure spaceisatriple (P, P, o), where P isaset (theunderlying set of the measure space), P is
acollection of subsets of P (the measurable sets), and ¢ : P — [0, oo] isanon-negative, countably
additive set function (themeasure function, or simply themeasure). The countably additive property
means that . .
. (U Di> = > o)
=1 =1
whenever the D; are mutually digoint measurable sets.

The measurable sets form ac-algebra, meaning that P contains IP, and is closed under the op-
erations of complementation and countable unions. For technical reasons,P is generally a proper
subset of 2P, that is, some sets are not measurable. However, for the measure spaces we are inter-
ested in (those constructed as the product of Lebesgue measures), the unmeasurable sets represent
pathological situations that can be ignored in practice.

Sometimes, the measures we consider will not be finite; that is, o(P) = oco. However, they
will always have the weaker property of beingo-finite, meaning that there is an infinite sequence
Dy, D, ... of measurable sets such that

and o(D;) isfinite for all i. That is, a o-finite measure space is one that can be decomposed into
countably many regions, each with finite measure.
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3.B.2 Thephoton event space

To define aradiometric quantity, wefirst choose an appropriatephoton event space Thisisthe subset
P C ¥ of thetrgjectory space containing all possiblelocations of the photon events wewish to count.
Thus, P depends on the definition of aphoton event; by defining photon eventsin different ways, we
will obtain different radiometric quantities. For example, consider the case ofvolume emission (e.g.
the light emitted by afire). Without knowledge of the specific scene geometry, we must assume that
a photon could be emitted from any point inIR?3, in any direction, at any wavelength, at any time;
thus we would set P = ¥ (the whole trajectory space). On the other hand, if photon events were
defined as crossings of a hypothetical surfaceS C IR?, then the photon event space would be

P=RxSxSxR".

In this example, IP is a 6-dimensional manifold within the 7-dimensional trajectory spaced.

3.B.3 Thegeometric measure

Next we define a measure ¢ on the photon event space, called thegeometric measure, which will be
used to measure the density of photon events. It will normally be defined as product of the natural
L ebesgue measures on the components of IP. For example, in the case of volume emissionp isgiven

by

0o =IxvxoxIt,

where [ and It are the usual length measures onIR and IR respectively, and v is the usual volume
measure on IR3. Note that this definition also establishes the geometrically measurable setsP, ac-
cording to the usual rules for product measures [Halmos 1950, p. 140]*

3.B.4 Theenergy measure
To count the photon events in various regions of P, we also define an energy content function

Q:P —0,00].

UTechnically, we work with the completion of the product measure, which augments P to include sets of
theform D A N, where A denotes the symmetric difference of two sets, D isameasurable set, and NV isan
arbitrary subset of a set of measure zero.
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To each measurable set D of the photon event space, it assigns a non-negative real numberQ (D)
that measures the total energy of the photon eventsinD. The function @ is assumed to obey the
following physically plausible axioms (see [Arvo 1995, p. 19]):

(AD) Q:P —[0,0]

(A2 Q (G Di> = iQ(Di) for mutually disoint{D;} C P
=1

=1

(A3) o(D)<o0 = Q(D)<x
(Ad) o(D)=0 = Q(D)=0

Axiom (A1) states that every region contains a non-negative quantity of energy. Axiom (A2)
states that (2 is countably additive; that is, if we consider a countable set of disjoint regionsD;, the
energy contained their union is simply the sum of their individual energies. Together, (A1) and (A2)
imply that @ is anon-negative, countably additive set function, so that by definition( is a measure
(on the same measurable sets for which o is defined).

Axiom (A3) states that every region with finiteo-measure contains a finite quantity of energy.
Intuitively, this says that the energy density is finite everywhere, a concept that will be made more
precise below. From a measure-theoretic point of view, it ensures that thes-finite property of ¢ car-
riesover to Q.

Finally, (A4) states that ) is continuous with respect to o, meaning that every set with zero o-
measure also has zero Q-measure. Thisimportant property allows the “ratio” of two measures to be
defined rigorously, as we shall see below.

By trandating these axioms into the language of measure theory, we obtain the following theo-
rem (cf. Arvo, Theorem 1 [Arvo 1995, p. 22)):

Theorem 3.1 (Existence of Energy Measures). Given a photon event space P with geometric
measure o, and an energy content function @ satisfying axioms (Al), (A2), (A3), and (A4), thenQ
defines a positive o-finite measure over P, and () is continuous with respect to .

Thus, we will now refer to Q as the energy measureon PP.

3.B.5 Defining radiometric quantitiesasa ratio of measures

Loosely speaking, a radiometric quantity can now be defined by measuring the density of@@ with
respect to o, i.e. the ratio dQ/do for aregion D that becomes arbitrarily small. Thisidea can be
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made precise by means of the Radon-Nikodym theorem [Halmos 1950, p. 128]%?

Theorem 3.2 (Radon-Nikodym). If (P, P, o) isa o-finite measure space, and if ac-finite measure
@ on P is continuous with respect to o, then there exists a non-negative, real-valued, o-measurable
function f on P such that

QD) = [ fdo
D
for every measurable set D € P. The function f is unique up to a set of p-measure zero.

Thefunction f is called the Radon-Nikodym derivative of 2 with respect to o, denoted

_ Q
f=0 (3.22)

Thisnotation emphasizesits similarity with ordinary differentiation, with which it shares many prop-
erties.

Using the Radon-Nikodym theorem, we can thus defineafunctionf corresponding to the density
of photon events. The meaning of this density obviously depends on how the events are defined.
However, we can summarize the fact of its existence as follows (cf. Arvo, Theorem 3 [Arvo 1995,
p. 23)):

Theorem 3.3 (Existence of Energy Density). Given a photon event spacelP with geometric mea-
sure o, and an energy content function ) satisfying axioms (A1), (A2), (A3), and (A4), then there
exists a p-measurable function f : P — (0, co), which is unique to within a set of p-measure zero,
satisfying
QD) = | fe.
D

where D € P isa measurable subset of IP.

3.B.6 Examplesof measure-theoretic definitions

We now give several examples showing how these concepts can be applied.

3.B.6.1 Spectral radiant sterisent

Consider again the case of volume emission. Recall from Section 3.B.2 that the photon event space
isthe whole trajectory spacelP = W, while the geometric measureisp = [ x v x o x [T. By taking

2Notice that we have restricted our definition of a measure space to positive, total measures, which sim-
plifies the statement of the theorem somewhat.
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the derivative d@/do, we obtain a quantity

AT do T dldvdodlt

This quantity is called spectral radiant sterisent [Nicodemus 1978, p. 55], and has units of power
per unit area per unit solid angle per unit wavelength[W - m=3 - sr=! - nm™!]. It is used for the
measurement of emission, scattering, and absorption within volumes.

3.B.6.2 Spectral phase space density

Asanother example, consider the events defined by intersecting the photon trajectories with the sur-
facet = ty. Thisallowsusto measure theinstantaneous spatial distribution of the photons, aconcept
that is particularly useful for steady-state systems. This was the situation studied by Arvo [1995],
who devel oped a measure-theoretic phase space density for photons distributed inIR* x S2.

In our framework, the event space for this situation is

P = {t} x v,

where {t,} denotes the set containing the single valuet,, and recalling that v is the phase space
Y = R? x §2 x R*. The geometric measure o is just the natural measure on the phase space,
with adight technical modification to account for presence of the fixed timety:

— +
0 = Ny XvXxoxIT,

where Ay, (D) = 1if tg € D and A4, (D) = 0 otherwise. Then the quantity

dQ d@
T T dvdodit (3.23)

measures the density of energy with respect to volume, direction, and wavelength[J - m 2 - sr— 1 .
nm™!]. We call u, the spectral phase space density. It is similar to the phase space density u de-
scribed by Arvo [1995], except that we have also taken the derivative with respect to wavelength.

3.B.6.3 Spectral radiance
As afinal example, define the photon events as crossings of a surfaceS. The event spaceis

P=RxSxS8xR",
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with the geometric measure defined by
0 =I1xAxo,xIt.

Notice that A x o, issimply the measure that was used to define radiance. Thus the density

Lol e
AT do T dldAdot alt

corresponds to spectral radianceas defined earlier (3.9). Notice that although this definition isvalid
only on the surface S, the choice of S was arbitrary. Thus we can use this equation to defineL
anywhere in the trgjectory spaceWw.

3.B.7 Discussion: fundamental vs. derived quantities

It is sometimes claimed that spectral radianceisthe“fundamental” radiometric quantity, from which
all others can be derived. Aswe have seen, thisisnot so. All of the three quantities defined in Sec-
tion 3.B.6 are fundamental, because they measuredifferent sets of photon events It isnot possible to
obtain one from another by integration. Each quantity must be defined independently, by first spec-
ifying the photon events, and then describing their density using a Radon-Nikodym derivative:?
Thereisnot even aunigque geometric space that we can use, since different kinds of photon events
require different geometric measures. 1n some cases, the measure can be defined on al of¥ (aswith
LY), whilein other casesit must be defined on alower-dimensional subset of ¥ (aswithuy and L).
Note that many “derived” quantities (i.e. one that is obtained by integrating afundamental quan-
tity, aswedid in Section 3.4 to obtain radiance from spectral radiance) can be interpreted directly as
Radon-Nikodym derivatives, by reducing the dimension of the underlying measure space. For ex-
ample, to interpret radiance as a Radon-Nikodym derivative, we could redefine the trajectory space
tobeR x R? x % (omitting the wavelength parameter), and then proceed as for spectral radiance

13Note that by making additional assumptions, it is often possible to express one fundamental quantity in
terms of another. For example, Arvo [1995, p. 26] shows how radiance can be defined in terms of the phase
space density u, by assuming that all photonstravel at the same speed ¢. He then observes that radiance and
phase space density arerelated accordingto Ly = cuy, where c isthe speed of light. (A similar observation
appearsin [Milne 1930, p. 76].)

Note that thisrelationship is only truein avacuum, since in general photonstravel at the speed ¢/n (where
7n isthe local refractiveindex, which may vary with position). It is even possible that photons at same point
in spacewill travel at different speeds (i.e. if they have different wavelengths, in a dispersive medium). Thus
in general, vy and L) cannot be derived from each other without additional assumptions, so that we consider
both of them to be fundamental quantities.
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(Section 3.B.6). This technique can be used to give rigorous meaning to the various derivative no-
tations we used in Section 3.4, such asE = d%Q / (dt dA).



Chapter 4

A General Operator For mulation of
Light Transport

Thegoal of thischapter isto devel op arigoroustheoretical basisfor bidirectiona light trans-
port algorithms. Current frameworks do not adequately describe the relationships between
light and importance transport; between finite element, recursive evaluation, and particle
tracing approaches; or between incident and exitant transport quantities, especially when
materialswith non-symmetric BSDF sare used. Asaresult, given abidirectional algorithm
that uses some combination of these features, it can be difficult to verify whether it actually
solvesthe original transport equations. This can lead to significant mistakes when bidirec-
tional algorithms are implemented, as we will see in Chapter 5.

To remedy these problems, we need a better theoretical framework for light transport
calculations. Thistheory should clearly state the relationships between the various solution
techniques mentioned above, using only a small number of basic concepts. It should also
show how these techniques are affected by non-symmetric scattering, and specify a set of
rulesthat allow correct results to be obtained. All components of the framework should be
expressed in terms of standard mathematical concepts, and the notation should be concise
and yet rigorous.

In this chapter, we develop a light transport framework that addresses these goals. It
concisely expresses the relationships between light and importance transport, in both their

103
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incident and exitant forms, and also their relationship to particle tracing. The fundamen-
tal building blocks used are measures, function spaces, inner products, and linear opera-
tors. Our work builds directly on the elegant formulation of Arvo [1995], who consid-
ered light transport among reflective surfaceswith symmetric BRDF's. We also incorporate
ideasfrom Christensen et al. [1993], Schroder & Hanrahan [1994], and Pattanaik & Mudur
[1995].

However, many aspects of our framework are new. Most importantly, we do not make
any assumptions about the symmetry of BSDF's. This leads to a framework with aricher
structure than previous approaches. There are four distinct transport quantities L;, L., W;,
W,,, corresponding to incident/exitant radiance/importance. For each of these quantities,
there is a distinct transport operator and measurement equation. All of these are related
in a ssmple way, since they are constructed from just two basic elements: the scattering
and propagation operators, which describe independent aspects of the light transport pro-
cess. This additional structure actually helps to clarify the relationships among transport
guantities, since we can see which relationships are fundamental, and which depend on the
symmetry of the BSDF.

There are several other contributions. We characterize particletracingin anew and more
useful way, as a condition on the probability distribution of a set of weighted sample rays.
We aso introduce the ray space abstraction, which simplifies the notation and clarifies the
structure of light transport calculations. Finaly, we point out that incident rather than field
radiance functions must be used to make certain transport operators self-adjoint.

This chapter is organized as follows. We start by defining the ray space and reviewing
some useful properties of functionson ray space. Next, we describe the scattering and prop-
agation operators, and we show how they can be used to represent light transport. We then
consider sensors and measurements, and show that the scattering and propagation opera-
tors can also be used for importance transport. In Section 4.7, we give a summary of the
complete transport framework.

Appendix 4.A considers particle tracing algorithms, and describes a new condition that
can be used to verify their correctness. Finally, Appendix 4.B gives an analysis of the in-
verses, adjoints, and norms of the operators we have defined.



4.1. RAY SPACE 105

4.1 Ray space

We define the ray space and throughput measure, which together form a natural basis for
light transport calculations. We show that it is possible to represent the ray space in more
than one way, and we also discuss the advantages of defining the ray space abstractly, as
opposed to using an explicit representation of rays.
Theray space R consists of all raysthat start at points on the scene surfaces. Formally,
R isthe Cartesian product
R = M x§?%, (4.2

where as usual, M isthe set of surfaces in the scene, and S? isthe set of all unit direction
vectors. Theray r = (x,w) hasoriginx and directionw. Thereason for requiringtheorigin
to lie on a surface is that in the absence of participating media, the radiance along a given
ray isconstant. Thusinstead of representing the radiance at every point in an environment,
it is sufficient to represent the radiance leaving surfaces.

Thethroughput measure. We define ameasure ;. on R, called the throughput measure,
that is used to integrate functions on ray space. Consider a small bundle of rays around a
central ray r = (x,w), such that the origins of these rays occupy an area dA, and their
directionsliewithin asolid angle of do. Then the throughput of thissmall bundleis defined
as

du(r) = dp(x,w) = dA(x)do, (W), (4.2)

that is, 1 isssmply the product of the areaand projected solid angle measures. Thisisknown
asthedifferential form of the throughput measure. Note that 1« isinvariant under Euclidean
transformations, which makesit unique up to aconstant factor [Ambartzumian 1990, p. 51].

To define (D) for ageneral set of rays D C R, we integrate the differential measure
(4.2) over thedomain D:

p(D) = [ dA(x)doy(w).

which can be written more explicitly as

u(D) = /M o-(D)dA(x) where D, = {w]|(x,w)e D}.
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The quantity (D) measures the light-carrying capacity of a bundle of rays D, and corre-
sponds to the classic radiometric concept of throughput [Steel 1974, Nicodemus 1976, Co-
hen & Wallace 1993]. The measure 4 is also similar to the usual measure on linesin R?
(see [Ambartzumian 1990]). However, note that the measures on line space and ray space
are not the same, since unlike line space, the ray space R can contain distinct rays that are
colinear (corresponding to lines that intersect M at more than one point).

The differential form (4.2) of the throughput measure can be written in several aterna-
tive forms that are sometimes useful. By expanding the definition (3.1) of projected solid
angle, we get

du(x,w) = |w-Ng(x)|dA(x)do(w), (4.3
= dA(x)do(w), (4.4)

where A" isthe projected area measure (3.7). All of these definitions are equivalent.
The throughput measure a so alows usto define radiance in a simpler and more natural

way, namely as power per unit throughput:

d®(r)

dp(r)

It is easy to check that this definition is equivalent to the ones given in Section 3.4.3.

L(r) = (4.5)

Other representationsof ray space. Although we will most often use the representation
r = (x,w) for aray, it ispossibleto represent the ray spacein other ways. For example, we
could define R as

R = MxM, (4.6)

so that each ray isapair r = x — x’ (where the arrow notation denotes the direction of the
ray). Notice that there is some redundancy in this representation, since the raysx — x’ and
x — x" are equivalent whenever x’ and x” lie in the same direction from x. However, this
redundancy is sometimes useful: for example, it allows usto construct abasisfor functions
onray space asatensor product of bases defined on the scene surfaces. Also noticethat with
this representation, there is no way to represent light that radiates out to infinity: thus, itis
most useful when M isa closed environment, and we are only interested in light transport
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between elements of M.
Even when R isrepresented in different ways, the throughput measure 1. should be un-
derstood to havethe same meaning. For example, with the representation above, . isdefined

by
cos(#) cos(6')

du(x—x') = V(x<x') x— x|

dA(x) dA(xX) . 4.7)

Hered and ¢’ are the angles between the segment x <+ x’ and the surface normalsat x and x’
respectively, while V' (x <+ x’) isthe visibility function, whichis 1 if x and x" are mutually
visible and 0 otherwise.! Asusual, the notation x — x’ indicates the direction of aray, and
f(x+>x') indicates a symmetric function.

Advantages of the ray space abstraction. There are several reasons to use the abstract
representation r € R for rays, rather than writing (x, w) explicitly. First, it clarifies the
structure of radiometric formulas, by hiding the details of the ray representation. Second,
it emphasizes that the representation is a superficial decision that can easily be changed.
Finally, it alows usto define concepts whose meanings do not depend on how the rays are
represented, e.g. the throughput measure /.

4.2 Functionson ray space

The distribution of radiance or importance in a given scene can be represented as a real-
valued function on ray space, i.e. afunction of the form

f:R—=R.

In this section, we study the properties of such functions (e.g. norms and inner products),
and review some terminology related to function spaces (i.e. collections of functions that
all have some specified property). These ideas will be used later to analyze the properties
of light transport operators.

That is, V(x +» x') = 1 if the open line segment between x and x’ does not intersect M. Note that the
visibility factor can be removed from the definition (4.7), by restricting R to contain only those rays where
Vixex') =1
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Norms. We restrict our attention to the L,, norms, which are defined by

£, = ([ 1rerasm) " @8

where p isapositive integer. In the limit as p — oo, we obtain the L, norm:

[fllsc = esssup|f(r)], (4.9)
reR

where ess sup denotes the essential supremum, i.e. the smallest real humber m such that
f(r) < m admost everywhere.? The most commonly used norms are the L, L., and L.,
norms, which measure the average, root-mean-sgquare (RMS), and maximum absolute val-
ues of a function respectively. When the particular norm being used is not important, we
will simply write || f|].

For the purposes of analysis, it is convenient to consider only the functions whose L,
norm is finite. The collection of all such functions (for a given value of p) iscalled an L,
space, which we will denote by L,(R) (to emphasize the domain R of these functions).
These spaces have desirable analytic properties (which depend on the assumption of finite
norms).

There are a variety of terms that are used to describe L,, spaces, corresponding to the
various properties that they possess. At the most basic level, they are vector spaces, since
each space L, (R) is closed under the operations of addition and scalar multiplication. Vec-
tors spaces are also known as linear spaces, and in this context, as function spaces (since
each element of L,(R) isafunction).

The L, spaces are also complete, meaning that all Cauchy sequences converge?® (this
property is useful for analysis). Thus, L,(R) is a complete, normed, linear space; in the
terminology of functional analysis, thisis called a Banach space.

2Almost everywhere means that the rays for which f(r) > m form a set of measure zero (with respect to
the throughput measure 11). Thus according to this definition, the essential supremum ignoresvaluesof f that
are attained only at isolated points, etc.

3A sequence of functions f1, f», . . . isaCauchy sequenceif for any € > 0, thereis anindex N such that
IIfi — f;ll < eforalid,j > N. Such asequence converges if there is afunction f € L,(R) such that

Mmoo [|fi = £l = 0.
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Inner products. Another useful operation is the inner product of two functions on ray
space, defined by
(£.9) = [ £(x) g(r) dur). (4.20)

Notice that the inner product notation is more concise than writing the integral explicitly,
and yet it also imparts more information (sinceit can immediately be recognized asan inner
product, rather than some other kind of integral). A linear space F equipped with an inner
product is called an inner product space.

Every inner product has an associated norm defined by

IFIl = (f. )72,

whichinthiscaseisidentical tothe L, norm. Thus, the space L, (R ), together with theinner
product (4.10), is an example of an inner product space that is complete with respect to its
associated norm: thisis called a Hilbert space.

It is also possible to define weighted inner products between functions on ray space, by
multiplying the integrand of (4.10) by a positive weighting function w(r). This technique
can also be used to define other norms. In this chapter, however, we will only have need for
the unweighted versions defined above.

4.3 The scattering and propagation operators

From aphysical standpoint, we can consider light transport to be an alternation of two steps.
The first is scattering, which describes the interaction of photons with surfaces. The other
ispropagation, in which photonstravel in straight linesthrough afixed medium. Following
Arvoet a. [1994], we will define each of these steps as alinear operator acting on radiance
functions.

A linear operator is ssimply alinear function A : F — F whose domain is a vector
space F. In our case, F is a space of radiance functions, as defined above. The notation
A f denotes the application of an operator to a function, whose result is another function.
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Thelocal scattering operator. We begin with the local scattering operator, defined by*

(Kh)(x,w,) = /9 Fo(x, wi— wo) h(x, w;) doy (w;) . (4.12)

When this operator is applied to an incident radiance function L;, it returns the exitant ra-
diance L, = KL; that results from a single scattering operation. Equation (4.11) issimilar
to the scattering equation (3.12), except that K operates on entire radiance functions, rather
than being restricted to a single point x. It maps one function L into another function KL,
where each function is defined over the whole ray spaceR.

The propagation operator. To define the propagation operator, wefirst give amore pre-
cise definition of the ray-casting function x, ,(x, w) mentioned in Section 3.7. First, let

dy(x,w) = inf{d >0 | x+dw € M}, (4.12)

which is called the boundary distance function [Arvo 1995, p. 136]. We then define the
ray-casting function as
Xy (X, w) = x+dy(x,w)w, (4.13)

S0 that x,,(x,w) represents the first point of M that is visible from x in the direction w.
When theray (x, w) doesnot intersect M, we haved, ,(x,w) = oo, and x, , isnot defined.®

The propagation of light in straight linesis now represented by the geometric or propa-
gation operator G, defined by

(X (x,wi), —w;) i dy, (x,wi) < 00,

(Gh)(x,wi) = { (4.14)

0 otherwise,

This operator expresses the incident radiance L; in terms of the exitant radiance L, leaving
the other surfaces of the environment, accordingto L; = GL,.
These definitionsof G and K are dightly different than those of Arvo [1995]. First, we

4Although this definition seems to depend on the particular ray representation r = (x,w), in fact it can
be used with any representation. To do this, simply replace the argument on the left-hand side by a single
parameter r, and replace the symbols x and w, by functionsx = x(r) and w, = w,(r) (whose definitions
depend on the representation used).

SWith respect to equation (4.12), we have used the convention that inf () = oo, where §) is the empty set.
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have considered transmission aswell asreflection, by using the BSDF in the definition of K.
Second, we have used incident and exitant radiance rather than field and surface radiance
(see Section 3.5), so that the direction of w; isreversed compared to [Arvo 1995]. Themain
advantage of this convention isthat G and K are both self-adjoint when f; is symmetric,
which greatly increases the symmetry between light and importance transport (as we will
seein Section 4.6). Onthe other hand, the G and K defined by Arvo are not self-adjoint. He
handlesthisby introducing an isomorphism H between surface and field radiance functions,
such that HG and KH are equivaent to the G and K defined here [Arvo 1995, p. 151].

Locality. Notice that to evaluate the radiance scattered along a given ray (x, w), we only
need to know the incident radiance at the same point x. In other words, the evaluation of
(Kh)(x,w) only requires the evaluation of / on rays of the form (x, w’). This property of
the scattering operator K is called locality.

In general, we say that atransport operator A islocal if the evaluation of (Ah)(r) only
requires the evaluation of ~ on asmall set of raysr’. Inthis sense, the propagation operator
G isalsolocal, since to evaluate (Gh)(x,w) we only need the value of i on asingle ray
(x', —w). In fact we could say that G ismorelocal than K, since (Gh)(r) depends on the
value of i on asingleray, while (Kh)(r) depends on the value of i on a two-dimensional
subset of R.

Locality isimportant, since it dictates how much of the domain of 2 must be examined
in order to compute (Ah)(r) for agivenray r. Thistype of locality has been successfully
exploited in radiosity calculations, in order to handle textures more efficiently [Gershbein
et al. 1994].

4.4 Thelight transport and solution operators

The composition of the scattering and propagation operators is called the light transport
operator,
T = KG.
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Thisoperator maps an exitant radiance function L,, into the exitant function T L,, that results
after a single scattering step. (When there is no ambiguity, we will drop the subscript on
exitant functions and simply write L.)

Recall that our goal isto measure the equilibrium radiance L. The condition that must
be satisfied in equilibrium is that

L = L.+TL, (4.15)

where L. (r) isthe emitted radiance function (specified as part of the scene model). Thisis
called thelight transport equation. It issimply areformulation of (3.19), which saysthat at
equilibrium, the exitant radiance must be the sum of emitted and scattered radiance.

The solution operator. Formally, the solution can be obtained by inverting the operator
equation (4.15):

I-T)L = L.
= I-T)"'Le,

where I is the identity operator. It is convenient to rewrite this equation in terms of the
solution operator®
S =(1I-T)", (4.16)

in which case the solutionissimply L = SL..

Conditions for invertibility. These forma manipulations are valid only if the operator
I — T isinvertible. A sufficient condition isthat || T|| < 1, where || T|| is the standard
operator norm

IT| = sup T[], (4.17)

Iri<t

6Note that S is closely related to the resolvent operator R, used in spectral analysis, except that R, has
aparameter A\, and does not have a universally accepted definition (e.g. compare [Delves & Mohamed 1985,
p. 74], [Taylor & Lay 1980, p. 272)). Itisalso closely related to the “GRDF” of Lafortune & Willems[1994],
which is simply anew name for the kernel of the solution operator S.



4.4. THELIGHT TRANSPORT AND SOLUTION OPERATORS 113

wherethe normson theright are function norms.” Giventhat | T|| < 1, theinverseof I— T
existsand is given by

S=(1I-T)" =T =I+T+T°+---. (4.18)
=0
Thisiscalled the Neumann series (after C. Neumann, though the method goes back asfar as
Liouville[Taylor & Lay 1980, p. 191]). Thisexpansion has a physical interpretation when
appliedto L = SL., since

L = Le+TLe+T2Le+"'

expresses L as the sum of emitted light, pluslight that has been scattered once, twice, etc.

The validity of (4.18) raises the issue of whether || T|| < 1. In general, this depends on
physical assumptionsabout the scene model, aswell asthe norm used for radiance functions.
We will consider several cases.

For (one-sided) reflective surfaces, Arvo hasshownthat |G|, < 1forany 1 < p < oo
[Arvo 1995, Theorem 14]. Furthermore, hehasshownthat || K||, < 1, aslongasal BRDF's
in the scene are energy-conserving and symmetric. By making the additional assumption
that no surface is perfectly reflective, he obtains ||K||, < 1 [Arvo 1995, Theorem 13], and
thus

1T, = [IKGl, < |Kl,|Gl, < 1.

In the case of general scattering (i.e. transmission as well as reflection), things are
dightly more complicated. Arvo’s proof thet ||G|| < 1 requires some modifications, be-
causeit depends on the fact that G* = I when M forms an enclosure (which does not hold
under the more general assumptions considered here). We will give adifferent proof below
(Appendix 4.B). Asfor K, itisno longer truethat || K|| < 1. Infact, itisonly true that

2
K| < Lz,
min

’Each function norm induces a distinct operator norm. The notation || - ||, can mean either the L,, norm
on functions (4.8), or the corresponding operator norm, depending on the type of its argument.
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where 7,,;, and 7,,,., de