
CS 429H, Spring 2011
Y86 assembly exercises

Assigned: Fri Feb 11, Due: Friday Feb 18, 11:59PM

Christian Miller (ckm@cs.utexas.edu) is the lead person for this assignment.

1 Introduction

In this lab, you will transform three simple functions from C into Y86 assembly and test them against a
simulator. The purpose of this is to give you practice with assembly level programming in general, and with
the Y86 instruction set and tools in particular.

2 Logistics

You will work on this lab individually.

Any clarifications and revisions to the assignment will be posted on the course Web page.

3 Handout Instructions

You can get a copy of this handout and the assignment code from the CS429H labs webpage:

http://www.cs.utexas.edu/˜fussell/courses/cs429h/labs/labs.shtml

Start by copying the file asmlab-handout.tar to a (protected) directory in which you plan to do your
work. Then give the command:

tar xvf asmlab-handout.tar

In the newly-created directory, run make to build the distribution.

1

4 Assignment

Your task is to write and simulate the following three Y86 programs. The required behavior of these pro-
grams is defined by the example C functions in examples.c. Be sure to put your name and ID in a
comment at the beginning of each program.

sum.ys: Iteratively sum linked list elements

Write a Y86 program (sum.ys) that iteratively sums the elements of a linked list. Your program should
consist of a main routine that invokes a Y86 function (sum list) that is functionally equivalent to the C
sum list function in Figure 1. Test your program using the following three-element list:

Sample linked list
.align 4
ele1:

.long 0x00a

.long ele2
ele2:

.long 0x0b0

.long ele3
ele3:

.long 0xc00

.long 0

rsum.ys: Recursively sum linked list elements

Write a recursive version of sum.ys (rsum.ys) that recursively sums the elements of a linked list.

Your program should consist of a main routine that invokes a recursive Y86 function (rsum list) that is
functionally equivalent to the rsum list function in Figure 1. Test your program using the same three-
element list you used for testing list.ys.

copy.ys: Copy a source block to a destination block

Write a program (copy.ys) that copies a block of words from one part of memory to another (non-
overlapping area) area of memory, computing the checksum (Xor) of all the words copied.

Your program should consist of a main routine that calls a Y86 function (copy block) that is functionally
equivalent to the copy block function in Figure 1. Test your program using the following three-element
source and destination blocks:

.align 4
Source block
src:

.long 0x00a

2

.long 0x0b0

.long 0xc00

Destination block
dest:

.long 0x111

.long 0x222

.long 0x333

To test your code, use the included simulator. Using sum.ys as an example, first enter yas sum.ys to
produce the object file sum.yo. Then enter yis sum.yo to run the program. This will simulate your
code and print out the number of steps to termination, the final register map, and a list of all the changes
made to memory.

5 Evaluation

The lab is worth 35 points, 10 points for each Y86 solution program, plus 5 points for style. Each solution
program will be evaluated for correctness, including proper handling of the %ebp stack frame register and
functional equivalence with the example C functions in examples.c.

The programs sum.ys and rsum.yswill be considered correct if their respective sum list and rsum list
functions return the sum 0xcba in register %eax.

The program copy.ys will be considered correct if its copy block function returns the sum 0xcba in
register %eax, and copies the three words 0x00a, 0x0b, and 0xc to the 12 contiguous memory locations
beginning at address dest.

Of course, your program will not be considered correct if it simply loads the right values into memory and
returns.

6 Handin Instructions

To submit your code, use the following command:

turnin --submit ckm asmlab sum.ys rsum.ys copy.ys

Make sure you have included your name and UTCS ID in a comment at the top of each of your files.

3

1 /* linked list element */
2 typedef struct ELE {
3 int val;
4 struct ELE *next;
5 } *list_ptr;
6

7 /* sum_list - Sum the elements of a linked list */
8 int sum_list(list_ptr ls)
9 {

10 int val = 0;
11 while (ls) {
12 val += ls->val;
13 ls = ls->next;
14 }
15 return val;
16 }
17

18 /* rsum_list - Recursive version of sum_list */
19 int rsum_list(list_ptr ls)
20 {
21 if (!ls)
22 return 0;
23 else {
24 int val = ls->val;
25 int rest = rsum_list(ls->next);
26 return val + rest;
27 }
28 }
29

30 /* copy_block - Copy src to dest and return xor checksum of src */
31 int copy_block(int *src, int *dest, int len)
32 {
33 int result = 0;
34 while (len > 0) {
35 int val = *src++;
36 *dest++ = val;
37 result ˆ= val;
38 len--;
39 }
40 return result;
41 }

Figure 1: C versions of the Y86 solution functions. See examples.c

4

