CS 429H, Spring 2011
Code Optimization
Assigned: Fri Apr 15, Due: Friday May 6, 11:59PM

Christian Miller ckm@cs.utexas.edu)is the lead person for this assignment.

1 Introduction

This assignment deals with optimizing memory intensiveecdthage processing offers many examples of
functions that can benefit from optimization. In this lab, wi# consider two image processing operations:
rotate , which rotates an image counter-clockwisedy, andsmooth , which “smooths” or “blurs” an
image.

For this lab, we will consider an image to be represented agoadimensional matrix\/, where M; ;
denotes the value df, j)th pixel of M. Pixel values are triples of red, green, and blue (RGB) \al\Vge

will only consider square images. L&t denote the number of rows (or columns) of an image. Rows and
columns are numbered, in C-style, frénto NV — 1.

Given this representation, thietate operation can be implemented quite simply as the combimatfo
the following two matrix operations:

e TransposeFor each(i, j) pair, M; ; and M ; are interchanged.

e Exchange rowsRow is exchanged with rotV — 1 — 4.

This combination is illustrated in Figure 1.

The smooth operation is implemented by replacing every pixel valuehwiite average of all the pixels
around it (in a maximum 03 x 3 window centered at that pixel). Consider Figure 2. The \&iepixels
M2[1][1]] andM2[N-1][N-1] are given below:

33— Y50 M1[4][5]
9
PN -2 Xjon - ML[A][]]
4

M2[1][1] =

M2[N — 1][N — 1] =

(0,0)

Rotate by 90

(counter—clockwise)

(0,0)

(0,0 ~
Exchange

Transpose Rows

Figure 1: Rotation of an image 9)° counterclockwise

M1[1][1] M2[1][1]

-
-

smooth
—_—

4 v/

M1IN-11IN-11 M2IN-11IN-11

Figure 2: Smoothing an image

2 Logistics

You may work in a group of up to two people in solving the praofefor this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions toet assignment will be posted on the course Web

page.

3 Hand Out Instructions
You can get a copy of this handout and the assignment codetheGS429H labs webpage:
http://lwww.cs.utexas.edu/ fussell/courses/cs429h/la bs/labs.shtml

Start by copyingperflab-handout.tar to a protected directory in which you plan to do your work.
Then give the commandar xvf perflab-handout.tar . This will cause a number of files to be
unpacked into the directory. The only file you will be modifgi and handing in i&ernels.c . The
driver.c program is a driver program that allows you to evaluate timpmance of your solutions. Use
the commandnake driver to generate the driver code and run it with the comméahdver

Looking at the filkernels.c ~ you'll notice a C structurégeam into which you should insert the requested
identifying information about the one or two individualsneprising your programming tearo this right
away so you don't forget.

4 Implementation Overview

Data Structures

The core data structure deals with image representatiguixél is a struct as shown below:

typedef struct {

unsigned short red; / * R value =/

unsigned short green; / * G value =/

unsigned short blue; / * B value =/
} pixel;

As can be seen, RGB values have 16-bit representationshitl@&lor”). An imagel is represented as a one-
dimensional array opixel s, where thé:, j)th pixel isI[RIDX(i,j,n)] . Heren is the dimension of the image
matrix, andRIDX is a macro defined as follows:

#define RIDX(i,j,n) ((i) *(N)+(j))

See the filadefs.h for this code.

Rotate

The following C function computes the result of rotating Hueirce imagesrc by 90° and stores the result in desti-
nation imagedst . dim is the dimension of the image.

void naive_rotate(int dim, pixel *src, pixel *dst) {
int i, j;
for(i=0; i < dim; i++)
for(j=0; j < dim; j++)
dst[RIDX(dim-1-j,i,dim)] = src[RIDX(i,j,dim)];

return;

}

The above code scans the rows of the source image matrixingpfythe columns of the destination image matrix.
Your task is to rewrite this code to make it run as fast as pessising techniques like code motion, loop unrolling
and blocking.

See the filkernels.c for this code.

Smooth

The smoothing function takes as input a source imsge and returns the smoothed result in the destination image
dst . Here is part of an implementation:

void naive_smooth(int dim, pixel *src, pixel *dst) {
int i, j;
for(i=0; i < dim; i++)
for(j=0; j < dim; j++)
dst[RIDX(i,j,dim)] = avg(dim, i, j, src); / * Smooth the (i,j)th pixel */

return;

}

The functionavg returns the average of all the pixels around @ity th pixel. Your task is to optimizemooth
(andavg) to run as fast as possibléNdte: The functionavg is a local function and you can get rid of it altogether to
implementsmooth in some other way.)

This code (and an implementationaifg) is in the filekernels.c

Performance measures

Our main performance measuredBEor Cycles per Elementf a function takes” cycles to run for an image of size
N x N, the CPE value i€/N2. Table 1 summarizes the performance of the naive implertiensashown above
and compares it against an optimized implementation. Bagoce is shown for for 5 different values of. All
measurements were madesohorr , a 3 GHz Core 2 Duo machine.

The ratios (speedups) of the optimized implementation thesnaive one will constitute scoreof your implementa-
tion. To summarize the overall effect over different valoésv, we will compute thegeometric meaof the results

4

\ Test case{ 1 2 3 4 5 \ \

Method N 64 128 256 512 1024 Geom. Mean
Naiverotate (CPE) 5.1 6.3 10.7 152 21.4
Optimizedrotate (CPE) 4.6 4.6 4.7 6.7 12.3

Speedup (naive/opt) 1.1 1.4 2.3 2.3 1.7 1.7
Method N 32 64 128 256 512 Geom. Mean
Naivesmooth (CPE) 108.3 108.0 107.8 107.5 107|6
Optimizedsmooth (CPE) 394 432 435 434 43

Speedup (naive/opt) 2.7 2.5 2.5 2.5 2.5 2.5

Table 1: CPEs and Ratios for Optimized vs. Naive Implemeniat

for these 5 values. That is, if the measured speedup¥ fer {32, 64, 128, 256,512} are Rsa, R4, R12s, Ras6, and
R512 then we compute the overall performance as

R = {/Ra» x Res x Riag X Rase X Rs12

Assumptions

To make life easier, you can assume thais a multiple of 32. Your code must run correctly for all suues ofV,
but we will measure its performance only for the 5 values showrable 1.

5 Infrastructure

We have provided support code to help you test the corresimiegour implementations and measure their perfor-
mance. This section describes how to use this infrastrectlihe exact details of each part of the assignment is
described in the following section.

Note: The only source file you will be modifying isernels.c

Versioning

You will be writing many versions of theotate andsmooth routines. To help you compare the performance of
all the different versions you've written, we provide a wdymgistering” functions.

For example, the filkernels.c that we have provided you contains the following function:

void register_rotate_functions() {
add_rotate_function(&rotate, rotate descr);

}

This function contains one or more callsadd _rotate _function . In the above example,

add rotate _function registers the functiorotate along with a stringotate _descr which is an ASCII
description of what the function does. See the Kiégnels.c to see how to create the string descriptions. This
string can be at most 256 characters long.

A similar function for your smooth kernels is provided in file kernels.c

Driver

The source code you will write will be linked with object cotiet we supply into @river binary. To create this
binary, you will need to execute the command

unix> make driver

You will need to re-make driver each time you change the cod@iinels.c . To test your implementations, you
can then run the command:

unix> ./driver

Thedriver can be run in four different modes:

e Default modein which all versions of your implementation are run.

e Autograder modgin which only therotate() andsmooth() functions are run. This is the mode we will
run in when we use the driver to grade your handin.

¢ File mode in which only versions that are mentioned in an input fileraire

¢ Dump modein which a one-line description of each version is dumpealtiext file. You can then edit this text
file to keep only those versions that you'd like to test ushefile mode You can specify whether to quit after
dumping the file or if your implementations are to be run.

If run without any argumentsiriver will run all of your versions default mode Other modes and options can be
specified by command-line argumentsitiver , as listed below:

-g : Run onlyrotate() andsmooth() functions gutograder mode

-f <funcfile> : Execute only those versions specifieckifiuncfile> (file mode.
-d <dumpfile> : Dump the names of all versions to a dump file cakatbmpfile> , one lineto a version
(dump modg

-q : Quit after dumping version names to a dump file. To be usedmadem with-d . For example, to quit
immediately after printing the dump file, typiriver -qd dumpfile

-h : Print the command line usage.

Team Information

Important: Before you start, you should fill in the structkernels.c with information about your team (group
name, team member names and email addresses).

6 Assignment Details

Optimizing Rotate (50 points)

In this part, you will optimizerotate to achieve as low a CPE as possible. You should congpileer and then
run it with the appropriate arguments to test your impleratos.

For example, running driver with the supplied naive vergfonrotate) generates the output shown below:

unix> ./driver

Teamname: bovik

Member 1: Harry Q. Bovik
Email 1: bovik@nowhere.edu

Rotate: Version = naive_rotate: Naive baseline implementa tion:
Dim 64 128 256 512 1024 Mean
Your CPEs 5.1 6.3 10.7 15.2 214

Baseline CPEs 5.1 6.3 10.7 15.2 21.4

Speedup 1.0 1.0 1.0 1.0 1.0 1.0

Optimizing Smooth (50 points)

In this part, you will optimizesmooth to achieve as low a CPE as possible.

For example, running driver with the supplied naive vergfon smooth) generates the output shown below:

unix> ./driver

Smooth: Version = naive_smooth: Naive baseline implementa tion:
Dim 32 64 128 256 512 Mean
Your CPEs 1085 108.0 107.7 1076 107.5

Baseline CPEs 108.3 108.0 107.8 1075 107.6

Speedup 1.0 1.0 1.0 1.0 1.0 1.0

Some advice.Look at the assembly code generated forithiate andsmooth . Focus on optimizing the inner
loop (the code that gets repeatedly executed in a loop) wlsengptimization tricks covered in class. Témooth is
more compute-intensive and less memory-sensitive tharotage function, so the optimizations are of somewhat
different flavors.

Coding Rules

You may write any code you want, as long as it satisfies theviofig:

e It must be in ANSI C. You may not use any embedded assemblyagsstatements.
e |t must not interfere with the time measurement mechanism. Will also be penalized if your code prints any
extraneous information.

You can only modify code itkernels.c . You are allowed to define macros, additional global vagaphnd other
procedures in these files.

Evaluation

Your solutions forotate andsmooth will each count for 50% of your grade. The score for each walbiased on
the following:

e Correctness: You will get NO CREDIT for buggy code that caube driver to complain! This includes code
that correctly operates on the test sizes, but incorrectiymage matrices of other sizes. As mentioned earlier,
you may assume that the image dimension is a multiple of 32.

e CPE: You will get full credit for your implementations aftate andsmooth if they are correct and achieve
mean CPEs above certain thresholds (to be determined lik®assignment is due). You will get partial credit
for a correct implementation that does better than the &gbplaive one. We will send out a clarification of
grading thresholds by the halfway point of this assignment.

7 Hand In Instructions

You will only submit one file for this assignmerikternels.c . To submit your code, use the following command:
turnin --submit ckm perflab kernels.c

Some things to keep in mind:

e Make sure you have included your identifying informatiorhie team struct ikernels.c

e Make sure thatthemtate() = andsmooth() functions correspond to your fastest implemnentationthese
are the only functions that will be tested when we use theedtiv grade your assignement.

e Remove any extraneous print statements.
o Create a team name of the form:

— “ID”where ID is your UTCS ID, if you are working alone, or

— “ID{+IDy" wherelID; is the UTCS ID of the first team member afld, is the UTCS ID of the second
team member.

This should be the same as the team name you entered in tbeistrinkernels.c

Good luck!

