CS 429H, Spring 2011
Pipelined Y86 processor optimization
Assigned: Fri Mar 25, Due: Friday Apr 8, 11:59PM

Christian Miller ckm@cs.utexas.edu)is the lead person for this assignment.

1 Introduction

In this lab, you will optimize a Y86 benchmark program andetined processor design at the same time.
The objective is to find the best combination of the two, andimize the average number of instruction
cycles per array element on the benchmark program.

2 Logistics

You will work on this lab alone.
Any clarifications and revisions to the assignment will betpd on the course Web page.

3 Handout Instructions
You can get a copy of this handout and the assignment codetheitS429H labs webpage:
http://lwww.cs.utexas.edu/ fussell/courses/cs429h/la bs/labs.shtml

Start by copying the filpipelab-handout.tar to a (protected) directory in which you plan to do your
work. Then give the command:

tar xvf pipelab-handout.tar

In the newly-created directory, runake to build the distribution.

1 /=

2 * ncopy - copy src to dst, returning number of positive ints
3 * contained in src array.

4 x|

5 int ncopy(int *Src, int xdst, int len)
6 {

7 int count = 0;

8 int val;

9

10 while (len > 0) {

11 val = =srct++;

12 xdst++ = val;

13 if (val > 0)

14 count++;

15 len--;

16 }

17 return count;

18 }

Figure 1:C version of the ncopy function. See sim/pipe/ncopy.c.

4 Assignment

You will be working in directorysim/pipe in this part.

Thencopy function in Figure 1 copieslan -element integer arrasrc to a non-overlappingst , return-
ing a count of the number of positive integers containedrin . Figure 2 shows the baseline Y86 version
of ncopy . The filepipe-full.hcl contains a copy of the HCL code for PIPE, along with a dedlamat
of the constant value IIADDL.

Your task in Part C is to modifpcopy.ys andpipe-full.hcl with the goal of makinghcopy.ys
run as fast as possible.

You will be handing in two filespipe-full.hcl andncopy.ys . Each file should begin with a header
comment with the following information:

e Your name and UTCS ID.

¢ A high-level description of your code. In each case, desdnitow and why you modified your code.

Coding Rules

You are free to make any modifications you wish, with the felley constraints:

e Your ncopy.ys function must work for arbitrary array sizes. You might benpged to hardwire
your solution for 64-element arrays by simply coding 64 copstructions, but this would be a bad
idea because we will be grading your solution based on if®peance on arbitrary arrays.

2

© 00 N O O~ WN P

A DA DD DD WWWWWWWWWWNDNDNDNNNDMNNNNMNNREPRRREPRERRERPRPRPRPR
O~ WNEFP OO 0ONOO OO WNPEPOOOWNOOOMDRAWNREOOOOWNOOOGDDMOWNDNLEREO

HH B T HHBHH T
ncopy.ys - Copy a src block of len ints to dst.
Return the number of positive ints (>0) contained in src.

Describe how and why you modified the baseline code.

#
#
#
Include your name and ID here.
#
#
#

HH B R B R B B T R R R R HHBHH R R R
Function prologue. Do not modify.

ncopy:

Loop:

Npos:

Done:

pushl %ebp

rrmovl %esp,%ebp
pushl %esi

pushl %ebx

mrmovl 8(%ebp),%ebx
mrmovl 12(%ebp),%ecx
mrmovl 16(%ebp),%edx

Loop header

xorl %esi,%esi

andl %edx,%edx
jle Done

Loop body.
mrmovl (%ebx), %eax
rmmovl %eax, (%ecx)
andl %eax, %eax
jle Npos

irmovl $1, %edi
addl %edi, %esi
irmovl $1, %edi

subl %edi, %edx
irmovl $4, %edi
addl %edi, %ebx
addl %edi, %ecx
andl %edx,%edx

jg Loop

Save old frame pointer
Set up new frame pointer
Save callee-save regs

src
dst
len

count = O;
len <= 0?
if so, goto Done:

read val from src...
...and store it to dst
val <= 07
if so, goto Npos:

count++
len--
src++
dst++

len > 0?
if so, goto Loop:

Function epilogue. Do not modify.

rrmovl %esi, %eax
popl %ebx

popl %esi

rrmovl %ebp, %esp
popl %ebp

ret

Figure 2:Baseline Y86 version of the ncopy function. See sim/pipe/ncopy.ys.

e Your ncopy.ys function must run correctly withris. By correctly, we mean that it must correctly
copy thesrc block andreturn (in%eax) the correct number of positive integers.

e Your pipe-full.hcl implementation must pass the regression testgi86-code and../ptest
(without the-il flags that testaddl andleave).

Other than that, you are free to implement ithédl instruction if you think that will help. You are free to
alter the branch prediction behavior or to implement teghes such as load bypassing. You may make any
semantics preserving transformations tonlepy.ys function, such as swapping instructions, replacing
groups of instructions with single instructions, deletgmme instructions, and adding other instructions.

Building and Running Your Solution

In order to test your solution, you will need to build a driygpgram that calls youncopy function. We
have provided you with thgen-driver.pl program that generates a driver program for arbitrary sized
input arrays. For example, typing

unix> make drivers
will construct the following two useful driver programs:

e sdriver.yo : A smalldriver programthat tests ancopy function on small arrays with 4 elements.
If your solution is correct, then this program will halt wighvalue of 3 in registe¥oeax after copying
thesrc array.

e Idriver.yo . A large driver programthat tests amcopy function on larger arrays with 63 ele-
ments. If your solution is correct, then this program willthsith a value of 62 0x3e) in register
%eax after copying thesrc array.

Each time you modify youncopy.ys program, you can rebuild the driver programs by typing
unix> make drivers

Each time your modify youpipe-full.hcl file, you can rebuild the simulator by typing
unix> make psim

If you want to rebuild the simulator and the driver progratypge

unix> make

To test your solution in GUI mode on a small 4-element argyet

unix> ./psim-g sdriver.yo

To test your solution on a larger 63-element array, type
unix> .Ipsim-g ldriver.yo

Once your simulator correctly runs your versionngopy.ys on these two block lengths, you will want
to perform the following additional tests:

e Testing your driver files on the ISA simulatbtake sure that youncopy.ys function works prop-
erly with vis:

unix> cd sin pi pe
unix> make
unix> ..Imsc/yis sdriver.yo

e Testing your code on a range of block lengths with the ISAlaiimu The Perl scriptorrectness.pl
generates driver files with block lengths from 1 up to somatl{chefault 64), simulates them with
YIS, and checks the results. It generates a report showingahesgbr each block length:

unix> ./ correctness. pl

If you get incorrect results for some lengffi, you can generate a driver file for that length that
includes checking code:

unix> ./gen-driver.pl -n K -c > driver.ys
unix> make driver.yo
unix> ..Imsclyis driver.yo

The program will end with registe¥oeax having valueOxaaaa if the correctness check passes,
Oxeeee if the count is wrong, an@xffff if the count is correct, but the words are not all copied

correctly.

e Testing your simulator on the benchmark progran@nce your simulator is able to correctly exe-
cute sdriver.ys andldriver.ys , You should test it against the Y86 benchmark programs in
..ly86-code

unix> (cd ../y86-code; nmake testpsim

This will run psim on the benchmark programs and compare results with

e Testing your simulator with extensive regression te8tsce you can execute the benchmark programs
correctly, then you should check it with the regressionst@st./ptest . For example, if your
solution implements thiaddl instruction, then

unix> (cd ../ptest; nmake SI M. ./ pipel/psimTFLAGS=-i)

5 Evaluation

This lab is worth 100 points:

e 20 points each for your descriptions in the headenscofpy.ys andpipe-full.hcl

e 60 points for performance. To receive credit here, yourtsmumust be correct, as defined earlier.
That is,ncopy runs correctly withvis, andpipe-full.hcl passes all tests iy86-code and
ptest

We will express the performance of your function in unitxpéles per elemeqdCPE). That is, if the
simulated code requirgS cycles to copy a block oN elements, then the CPE {$/N. The PIPE
simulator display the total number of cycles required to plate the program. The baseline version
of thencopy function running on the standard PIPE simulator with a |&8&lement array requires
1037 cycles to copy 63 elements, for a CPE@37/63 = 16.46.

Since some cycles are used to set up the caticlmpy and to set up the loop withincopy , you
will find that you will get different values of the CPE for diffent block lengths (generally the CPE
will drop asN increases). We will therefore evaluate the performanceof function by computing
the average of the CPEs for blocks ranging from 1 to 64 elesnelfbu can use the Perl script

benchmark.pl inthepipe directory to run simulations of yourcopy.ys code over a range of
block lengths and compute the average CPE. Simply run thenzord

unix> ./ benchmar k. pl

to see what happens. For example, the baseline versionétpy function has CPE values ranging
betweerd5.0 and 16.45, with an average of8.15. Note that this Perl script does not check for the
correctness of the answer. Use the sarptrectness.pl for this.

You should be able to achieve an average CPE of lessith@nOur best version averagest3.

By default, benchmark.pl andcorrectness.pl compile and teshcopy.ys . Use the-f
argument to specify a different file name. THe flag gives a complete list of the command line
arguments.

6 Handin Instructions
To submit your code, use the following command:
turnin --submit ckm pipelab ncopy.ys pipe-full.hcl

Make sure you have included your name and UTCS ID in a comntehedop of each of your files.

