
CS 429H, Spring 2011
Pipelined Y86 processor optimization

Assigned: Fri Mar 25, Due: Friday Apr 8, 11:59PM

Christian Miller (ckm@cs.utexas.edu) is the lead person for this assignment.

1 Introduction

In this lab, you will optimize a Y86 benchmark program and a pipelined processor design at the same time.
The objective is to find the best combination of the two, and minimize the average number of instruction
cycles per array element on the benchmark program.

2 Logistics

You will work on this lab alone.

Any clarifications and revisions to the assignment will be posted on the course Web page.

3 Handout Instructions

You can get a copy of this handout and the assignment code fromthe CS429H labs webpage:

http://www.cs.utexas.edu/˜fussell/courses/cs429h/la bs/labs.shtml

Start by copying the filepipelab-handout.tar to a (protected) directory in which you plan to do your
work. Then give the command:

tar xvf pipelab-handout.tar

In the newly-created directory, runmake to build the distribution.

1

1 / *
2 * ncopy - copy src to dst, returning number of positive ints
3 * contained in src array.
4 * /
5 int ncopy(int * src, int * dst, int len)
6 {
7 int count = 0;
8 int val;
9

10 while (len > 0) {
11 val = * src++;
12 * dst++ = val;
13 if (val > 0)
14 count++;
15 len--;
16 }
17 return count;
18 }

Figure 1:C version of the ncopy function. See sim/pipe/ncopy.c.

4 Assignment

You will be working in directorysim/pipe in this part.

Thencopy function in Figure 1 copies alen -element integer arraysrc to a non-overlappingdst , return-
ing a count of the number of positive integers contained insrc . Figure 2 shows the baseline Y86 version
of ncopy . The filepipe-full.hcl contains a copy of the HCL code for PIPE, along with a declaration
of the constant value IIADDL.

Your task in Part C is to modifyncopy.ys andpipe-full.hcl with the goal of makingncopy.ys
run as fast as possible.

You will be handing in two files:pipe-full.hcl andncopy.ys . Each file should begin with a header
comment with the following information:

• Your name and UTCS ID.

• A high-level description of your code. In each case, describe how and why you modified your code.

Coding Rules

You are free to make any modifications you wish, with the following constraints:

• Your ncopy.ys function must work for arbitrary array sizes. You might be tempted to hardwire
your solution for 64-element arrays by simply coding 64 copyinstructions, but this would be a bad
idea because we will be grading your solution based on its performance on arbitrary arrays.

2

1 ### ###############
2 # ncopy.ys - Copy a src block of len ints to dst.
3 # Return the number of positive ints (>0) contained in src.
4 #
5 # Include your name and ID here.
6 #
7 # Describe how and why you modified the baseline code.
8 #
9 ### ###############

10 # Function prologue. Do not modify.
11 ncopy: pushl %ebp # Save old frame pointer
12 rrmovl %esp,%ebp # Set up new frame pointer
13 pushl %esi # Save callee-save regs
14 pushl %ebx
15 mrmovl 8(%ebp),%ebx # src
16 mrmovl 12(%ebp),%ecx # dst
17 mrmovl 16(%ebp),%edx # len
18

19 # Loop header
20 xorl %esi,%esi # count = 0;
21 andl %edx,%edx # len <= 0?
22 jle Done # if so, goto Done:
23

24 # Loop body.
25 Loop: mrmovl (%ebx), %eax # read val from src...
26 rmmovl %eax, (%ecx) # ...and store it to dst
27 andl %eax, %eax # val <= 0?
28 jle Npos # if so, goto Npos:
29 irmovl $1, %edi
30 addl %edi, %esi # count++
31 Npos: irmovl $1, %edi
32 subl %edi, %edx # len--
33 irmovl $4, %edi
34 addl %edi, %ebx # src++
35 addl %edi, %ecx # dst++
36 andl %edx,%edx # len > 0?
37 jg Loop # if so, goto Loop:
38

39 # Function epilogue. Do not modify.
40 Done: rrmovl %esi, %eax
41 popl %ebx
42 popl %esi
43 rrmovl %ebp, %esp
44 popl %ebp
45 ret

Figure 2:Baseline Y86 version of the ncopy function. See sim/pipe/ncopy.ys.

3

• Your ncopy.ys function must run correctly withYIS. By correctly, we mean that it must correctly
copy thesrc block andreturn (in%eax) the correct number of positive integers.

• Yourpipe-full.hcl implementation must pass the regression tests in../y86-code and../ptest
(without the-il flags that testiaddl andleave).

Other than that, you are free to implement theiaddl instruction if you think that will help. You are free to
alter the branch prediction behavior or to implement techniques such as load bypassing. You may make any
semantics preserving transformations to thencopy.ys function, such as swapping instructions, replacing
groups of instructions with single instructions, deletingsome instructions, and adding other instructions.

Building and Running Your Solution

In order to test your solution, you will need to build a driverprogram that calls yourncopy function. We
have provided you with thegen-driver.pl program that generates a driver program for arbitrary sized
input arrays. For example, typing

unix> make drivers

will construct the following two useful driver programs:

• sdriver.yo : A small driver programthat tests anncopy function on small arrays with 4 elements.
If your solution is correct, then this program will halt witha value of 3 in register%eaxafter copying
thesrc array.

• ldriver.yo : A large driver programthat tests anncopy function on larger arrays with 63 ele-
ments. If your solution is correct, then this program will halt with a value of 62 (0x3e) in register
%eaxafter copying thesrc array.

Each time you modify yourncopy.ys program, you can rebuild the driver programs by typing

unix> make drivers

Each time your modify yourpipe-full.hcl file, you can rebuild the simulator by typing

unix> make psim

If you want to rebuild the simulator and the driver programs,type

unix> make

To test your solution in GUI mode on a small 4-element array, type

unix> ./psim -g sdriver.yo

4

To test your solution on a larger 63-element array, type

unix> ./psim -g ldriver.yo

Once your simulator correctly runs your version ofncopy.ys on these two block lengths, you will want
to perform the following additional tests:

• Testing your driver files on the ISA simulator.Make sure that yourncopy.ys function works prop-
erly with YIS:

unix> cd sim/pipe
unix> make
unix> ../misc/yis sdriver.yo

• Testing your code on a range of block lengths with the ISA simulator. The Perl scriptcorrectness.pl
generates driver files with block lengths from 1 up to some limit (default 64), simulates them with
YIS, and checks the results. It generates a report showing the status for each block length:

unix> ./correctness.pl

If you get incorrect results for some lengthK, you can generate a driver file for that length that
includes checking code:

unix> ./gen-driver.pl -n K -c > driver.ys
unix> make driver.yo
unix> ../misc/yis driver.yo

The program will end with register%eax having value0xaaaa if the correctness check passes,
0xeeee if the count is wrong, and0xffff if the count is correct, but the words are not all copied
correctly.

• Testing your simulator on the benchmark programs.Once your simulator is able to correctly exe-
cutesdriver.ys and ldriver.ys , you should test it against the Y86 benchmark programs in
../y86-code :

unix> (cd ../y86-code; make testpsim)

This will run psim on the benchmark programs and compare results withYIS.

• Testing your simulator with extensive regression tests.Once you can execute the benchmark programs
correctly, then you should check it with the regression tests in ../ptest . For example, if your
solution implements theiaddl instruction, then

unix> (cd ../ptest; make SIM=../pipe/psim TFLAGS=-i)

5

5 Evaluation

This lab is worth 100 points:

• 20 points each for your descriptions in the headers ofncopy.ys andpipe-full.hcl .

• 60 points for performance. To receive credit here, your solution must be correct, as defined earlier.
That is,ncopy runs correctly withYIS, andpipe-full.hcl passes all tests iny86-code and
ptest .

We will express the performance of your function in units ofcycles per element(CPE). That is, if the
simulated code requiresC cycles to copy a block ofN elements, then the CPE isC/N . The PIPE
simulator display the total number of cycles required to complete the program. The baseline version
of thencopy function running on the standard PIPE simulator with a large63-element array requires
1037 cycles to copy 63 elements, for a CPE of1037/63 = 16.46.

Since some cycles are used to set up the call toncopy and to set up the loop withinncopy , you
will find that you will get different values of the CPE for different block lengths (generally the CPE
will drop asN increases). We will therefore evaluate the performance of your function by computing
the average of the CPEs for blocks ranging from 1 to 64 elements. You can use the Perl script
benchmark.pl in thepipe directory to run simulations of yourncopy.ys code over a range of
block lengths and compute the average CPE. Simply run the command

unix> ./benchmark.pl

to see what happens. For example, the baseline version of thencopy function has CPE values ranging
between45.0 and16.45, with an average of18.15. Note that this Perl script does not check for the
correctness of the answer. Use the scriptcorrectness.pl for this.

You should be able to achieve an average CPE of less than12.0. Our best version averages7.43.

By default, benchmark.pl andcorrectness.pl compile and testncopy.ys . Use the-f
argument to specify a different file name. The-h flag gives a complete list of the command line
arguments.

6 Handin Instructions

To submit your code, use the following command:

turnin --submit ckm pipelab ncopy.ys pipe-full.hcl

Make sure you have included your name and UTCS ID in a comment at the top of each of your files.

6

