Systems |

Machine-Level Programming VIII:
Structured Data

Topics
m Alignment
m Unions

m Buffer bounds checking and
overflow

Alignment

Aligned Data
m Primitive data type requires K bytes
m Address must be multiple of K

m Required on some machines; advised on IA32
e treated differently by Linux and Windows!

Motivation for Aligning Data

m Memory accessed by (aligned) double or quad-words

e Inefficient to load or store datum that spans quad word
boundaries

e Virtual memory very tricky when datum spans 2 pages

Compiler

m Inserts gaps in structure to ensure correct alignment of
fields

Specific Cases of Alignment

Size of Primitive Data Type:

m 1 byte (e.g., char)
® no restrictions on address
m 2 bytes (e.g., short)
® |owest 1 bit of address must be 0,
m 4 bytes (e.g., int, float, char *, etc.)
® |owest 2 bits of address must be 00,
m 8 bytes (e.g., double)
® Windows (and most other OS’s & instruction sets):
» lowest 3 bits of address must be 000,
® Linux:
» lowest 2 bits of address must be 00,
» I.e., treated the same as a 4-byte primitive data type

m 12 bytes (long double)
® Linux:
» lowest 2 bits of address must be 00,
» I.e., treated the same as a 4-byte primitive data type

Satisfying Alignment with Structures
Offsets Within Structure

m Must satisfy element’s alignment requirement
struct S1 {
Overall Structure Placement ?hir_ 2 -
= Each structure has alignment requirement K zzubie[3,
e Largest alignment of any element } *p;

= Initial address & structure length must be
multiples of K

Example (under Windows):

m K =8, due to double element

c] | iro1 [iri1 | | v
p+0 pt4 p+8 pt+16 pt+24

T Multiple of 4 Multiple of 8 T

Multiple of 8 Multiple of 8
4

Linux vs. Windows

struct S1 {
char c;
int i[2];
Windows (including Cygwin): } f;‘fble vi
m K =8, due to double element
c] [ito1 [irm1 | [-
p+0 pt4 p+8 pt+16 pt+24
f ! f f
Multiple of 4 Multiple of 8 i
Multiple of 8p P Multiple of 8

Linux:
m K=4; double treated like a 4-byte data type

c] T TS v

p+0 pt4 pt8 ptl2 pt+20
f) ! f
Multiple of 4 Multiple of 4

Multiple of 4 Multiple of 4

Overall Alignment Requirement

struct S2 {]
double x; p must be multiple of:
int i[2]; 8 for Windows
char c; 4 for Linux
} *p;
x [itor T a1 e
p+0 p+8 p+12 p+16 Windows: p+24
Linux: p+20
struct S3 {
float x[2];
int i[2]; . . .
char c; p must be multiple of 4 (in either OS)
} *p;

x[0] [=111 [iro1 [iri1 <]
p+0 pt4 p+8 pt+12 pt+16 p+20

Ordering Elements Within Structure

struct S4 {
char cl;
double v;
char c2;
int 1i;

} *ps

10 bytes wasted space in Windows

kll

v kZI i

p+0

struct S5 {
double v;
char cl;
char c2;
int 1i;

} *p;

ptlé6 pt+20 pt24

2 bytes wasted space

[e]c2 i

p+0

p+8

pt+1l2 ptlé6

Arrays of Structures

Principle

m Allocated by repeating allocation Hmzsae GG

for array type short i;

= In general, may nest arrays & float v;

structures to arbitrary depth short j;

} a[10];
a[1].i | a[l].v [ar11.5]
a+12-.. a+16 at20 . a+24
a[0] | a[1] [al[2]
a+0 a+l2 a+24 a+36

Accessing Element within Array

m Compute offset to start of structure

e Compute 12*j as 4*(i+2i)
. . struct S6 {
m Access element according to its offset cibente f s
within structure st e
e Offset by 8 short j;
® Assembler gives displacement as a + 8 } a[10];

» Linker must set actual value

short get j(int idx)
{

return a[idx].j;

%eax = idx
leal (%eax, %eax,2),%eax # 3*idx
movswl a+8(,%eax,4) ,%eax

a[0] I s a[il .l . o o
a+0 a+121
“;Y;].l I a[i] .v I afil].Jj I
a+l2i a+12i+8

Satisfying Alignment within Structure

Achieving Alignment

m Starting address of structure array must be
multiple of worst-case alignment for any element

® a must be multiple of 4 struct S6 {
m Offset of element within structure must be short i;
multiple of element’s alignment requirement BLEEE 7
e v’s offset of 4 is a multiple of 4 } :1[“1’;; &
m Overall size of structure must be multiple of '
worst-case alignment for any element
e Structure padded with unused space to be 12
bytes
a[0] | ¢ oo al[i] | e o o
at0 T ot

Ty
e
.
"
.
"
L
"
.
"a
"
e
.
"
.
"
"
"
.
"
“a
e
.
i}

/a[l]l | alll.v [21115] |

Multiple of 4 _ _
a+l12i a+l2i+4

J)
Y.
¥~ Muitiple of 4 10

Union Allocation

Principles
m Overlay union elements
m Allocate according to largest element
m Can only use one field at a time

union Ul { Eﬂ
Eiiri?é]; if0] | il1]
double v; v
struct S1 { } *up; up+0 up+4 up+8
char c;
int i[2];
double v;
} *sp;

(Windows alignment)

] [iro1 T sr11] I v
sp+0 sp+4 sp+8 sp+16 sp+24

11

Using Union to Access Bit Patterns

typedef union { float bit2float (unsigned
float £; u) {
unsigned u; bit float t arg;

} bit float t; arg.u = u;

return arg.f;

}

Hh

unsigned float2bit(float

£) {

= Get direct access to bit bit float t arg;
representation of float arg.f = £;

. return arg.u;
m bit2float generates float with |,

given bit pattern
® NOT the same as (float) u

m float2bit generates bit pattern
from float
® NOT the same as (unsigned) £

0 4

12

Byte Ordering Revisited

Idea

m Short/long/quad words stored in memory as 2/4/8
consecutive bytes

m Which is most (least) significant?

m Can cause problems when exchanging binary data between
machines

Big Endian

m Most significant byte has lowest address
m PowerPC, Sparc

Little Endian
m Least significant byte has lowest address

m Intel x86, Alpha
13

Byte Ordering Example

union {
unsigned char c[8];
unsigned short s[4];
unsigned int i[2];
unsigned long 1[1];
} dw;

c[Olflc[1l]lc[2]c[3]1dc[4]lc[S]c[6]llcI7]

14

Byte Ordering Example (Cont).

int j;
for (j = 0; j < 8; j++)
dw.c[j] = 0x£f0 + j;

printf ("Characters 0-7 ==

[0x%$x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x]\n",
dw.c[0], dw.c[1l], dw.c[2], dw.c[3],
dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf ("Shorts 0-3 ==
[0x%$x,0x%x,0x%x,0x%x]\n",
dw.s[0], dw.s[1l], dw.s[2], dw.s[3])

printf ("Ints 0-1 == [0x%x,0x%x]\n",
dw.i[0], dw.i[1]);

printf ("Long 0 == [0x%1x]\n",
dw.1[0]) ;

15

Byte Ordering on x86

Little Endian

f0 £l £2 £3 £4 £5 fo £

clolfertiJer21]ci31]cra1]crs1]er61]cr71
LSB MSB LSB MSB LSB MSB LSB MSB
sto] | st11 [st21 [sI3i

LSB MSB LSB MSB
i[0] | i[1]
LSB MSB
1[0]
<
Print

Output on Pentium:

Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0x£f6,0x£f7]
Shorts 0-3 == [0xf1lf0,0x£f3f2,0x£f5f4,0x£7£6]

Ints 0-1 == [0x£f3£f2f1f0,0xf7£f6£5£4]

Long 0 == [0x£3£f2£f1£f0]

16

Byte Ordering on Sun

Big Endian

f0 £l £2 £3 £4 £5 fo £
clolfertifer21]ci31]cra1]crs1]cr61]cr71
MSB LSB MSB LSB MSB LSB MSB LSB
sto] [st11 [st21 [sI3i

MSB LSB MSB LSB
i[0] | i[1]
MSB LSB
1[0]
Print >

Output on Sun:

Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0x£f6,0x£f7]
Shorts 0-3 == [0xf0fl1l,0x£f2£f3,0x£f4£f5,0x£6£7]

Ints 0-1 == [O0xf0f1£f2f3,0xf4£5£6£7]

Long 0 == [0xf0£f1£2£3]

17

Byte Ordering on Alpha

Little Endian

0 fl £f2 £3 4 £5 fo £

ciolJerr1]er21]c31]cra1]cts1]ct61]c171

LSB MSB LSB MSB LSB MSB LSB MSB
sto]l [sti1 [st21 [s3I

LSB MSB LSB MSB
i[0] | i[1]
LSB MSB
1[0]
<
Print

Output on Alpha:

Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0x£f6,0x£f7]
Shorts 0-3 == [0xf1lf0,0x£f3f2,0x£f5f4,0x£7£6]

Ints 0-1 == [0x£f3£f2f1f0,0xf7£f6£5£4]

Long 0 == [Oxf7f6£5£f4£3f2f1£0]

18

Summary
Arrays in C

m Contiguous allocation of memory
m Pointer to first element
m No bounds checking

Compiler Optimizations
m Compiler often turns array code into pointer code (zd2int)
m Uses addressing modes to scale array indices
m Lots of tricks to improve array indexing in loops

Structures
m Allocate bytes in order declared
m Pad in middle and at end to satisfy alignment

Unions
m Overlay declarations
m Way to circumvent type system 19

Extra slides

Dynamic Nested Arrays

Strength int * new var matrix(int n)

m Can create matrix of {

- . i *
arbitrary size return (int *)

calloc(sizeof (int), n*n);

Programming J
m Must do index
computation explicitly int var_ele
(int *a, int 1i,
Performance int j, int n)
m Accessing single element {

return al[i*n+j];

costly }

m Must do multiplication

movl 12 (%ebp) , $eax #
movl 8 (%ebp) , $edx #
imull 20 (%ebp) , %eax # n*i
addl 16 (%ebp) , %eax # n*i+j

movl (%edx,%eax,4),%eax # Mem[a+4* (i*n+j)]

21

Dynamic Array Multiplication

Without Optimizations

m Multiplies
e 2 for subscripts
e 1 for data

m Adds

® 4 for array indexing
e 1 for loop index
e 1 for data

(*, k)

Pl (1,7)

Row-wise A /‘B
Column-wise

/* Compute element i,k of
variable matrix product */
int var prod ele
(int *a, int *b,
int i, int k, int n)

int j;
int result = 0;
for (jJ = 0; j < n; Jj++)
result +=
a[i*n+j] * b[j*n+k];
return result;

22

Optimizing Dynamic Array Mult.

Optimizations

m Performed when set
optimization level to -02

Code Motion

m Expression i*n can be
computed outside loop

Strength Reduction

m Incrementing j has effect of
incrementing j*n+k by n

Performance

m Compiler can optimize
regular access patterns

{

int j;
int result = 0;
for (jJ = 0; j < n; j++)
result +=
a[i*n+j] * b[j*n+k];
return result;

int j;

int result = 0;

int iTn = i*n;

int jTnPk = k;

for (J = 0; j < n; Jj++) {
result +=

a[iTn+j] * b[jTnPk];

JTnPk += n;

}

return result;

