
Machine-Level Programming VIII:
Structured Data

TopicsTopics
 Alignment
 Unions
 Buffer bounds checking and

overflow

Systems I



2

Alignment

Aligned DataAligned Data
 Primitive data type requires K bytes
 Address must be multiple of K
 Required on some machines; advised on IA32

 treated differently by Linux and Windows!

Motivation for Aligning DataMotivation for Aligning Data
 Memory accessed by (aligned) double or quad-words

 Inefficient to load or store datum that spans quad word
boundaries

 Virtual memory very tricky when datum spans 2 pages

CompilerCompiler
 Inserts gaps in structure to ensure correct alignment of

fields



3

Specific Cases of Alignment
Size of Primitive Data Type:Size of Primitive Data Type:

 1 byte (e.g., char)
 no restrictions on address

 2 bytes (e.g., short)
 lowest 1 bit of address must be 02

 4 bytes (e.g., int, float, char *, etc.)
 lowest 2 bits of address must be 002

 8 bytes (e.g., double)
 Windows (and most other OSʼs & instruction sets):

» lowest 3 bits of address must be 0002
 Linux:

» lowest 2 bits of address must be 002
» i.e., treated the same as a 4-byte primitive data type

 12 bytes (long double)
 Linux:

» lowest 2 bits of address must be 002
» i.e., treated the same as a 4-byte primitive data type



4

struct S1 {
  char c;
  int i[2];
  double v;
} *p;

Satisfying Alignment with Structures
Offsets Within StructureOffsets Within Structure

 Must satisfy elementʼs alignment requirement

Overall Structure PlacementOverall Structure Placement
 Each structure has alignment requirement K

 Largest alignment of any element
 Initial address & structure length must be

multiples of K

Example (under Windows):Example (under Windows):
 K = 8, due to double element
c i[0] i[1] v
p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8



5

Linux vs. Windows

Windows (including Windows (including CygwinCygwin):):
 K = 8, due to double element

Linux:Linux:
 K = 4; double treated like a 4-byte data type

struct S1 {
  char c;
  int i[2];
  double v;
} *p;

c i[0] i[1] v

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

c i[0] i[1]
p+0 p+4 p+8

Multiple of 4 Multiple of 4
Multiple of 4

v
p+12 p+20

Multiple of 4



6

Overall Alignment Requirement
struct S2 {
  double x;
  int i[2];
  char c;
} *p;

struct S3 {
  float x[2];
  int i[2];
  char c;
} *p;

p+0 p+12p+8 p+16 Windows: p+24
Linux: p+20

ci[0] i[1]x

ci[0] i[1]

p+0 p+12p+8 p+16 p+20

x[0] x[1]

p+4

p must be multiple of: 
8 for Windows
4 for Linux

p must be multiple of 4 (in either OS)



7

Ordering Elements Within Structure
struct S4 {
  char c1;
  double v;
  char c2;
  int i;
} *p;

struct S5 {
  double v;
  char c1;
  char c2;
  int i;
} *p;

c1 iv

p+0 p+20p+8 p+16 p+24

c2

c1 iv

p+0 p+12p+8 p+16

c2

10 bytes wasted space in Windows

2 bytes wasted space



8

Arrays of Structures
PrinciplePrinciple

 Allocated by repeating allocation
for array type

 In general, may nest arrays &
structures to arbitrary depth

a[0]

a+0

a[1] a[2]

a+12 a+24 a+36
• • •

a+12 a+20a+16 a+24

struct S6 {
  short i;
  float v;
  short j;
} a[10];

a[1].i a[1].ja[1].v



9

Accessing Element within Array
 Compute offset to start of structure

 Compute 12*i as 4*(i+2i)
 Access element according to its offset

within structure
 Offset by 8
 Assembler gives displacement as a + 8

» Linker must set actual value

a[0]

a+0

a[i]

a+12i

• • • • • •

short get_j(int idx)
{
  return a[idx].j;
}

# %eax = idx
leal (%eax,%eax,2),%eax # 3*idx
movswl a+8(,%eax,4),%eax

a+12i a+12i+8

struct S6 {
  short i;
  float v;
  short j;
} a[10];

a[i].i a[i].ja[i].v



10

Satisfying Alignment within Structure
Achieving AlignmentAchieving Alignment

 Starting address of structure array must be
multiple of worst-case alignment for any element
  a must be multiple of 4

 Offset of element within structure must be
multiple of elementʼs alignment requirement
  vʼs offset of 4 is a multiple of 4

 Overall size of structure must be multiple of
worst-case alignment for any element
 Structure padded with unused space to be 12

bytes

struct S6 {
  short i;
  float v;
  short j;
} a[10];

a[0]

a+0

a[i]

a+12i

• • • • • •

a+12i a+12i+4

a[1].i a[1].ja[1].v

Multiple of 4

Multiple of 4



11

Union Allocation
PrinciplesPrinciples

 Overlay union elements
 Allocate according to largest element
 Can only use one field at a time

union U1 {
  char c;
  int i[2];
  double v;
} *up;

c
i[0] i[1]

v
up+0 up+4 up+8struct S1 {

  char c;
  int i[2];
  double v;
} *sp;

c i[0] i[1] v
sp+0 sp+4 sp+8 sp+16 sp+24

(Windows alignment)



12

typedef union {
  float f;
  unsigned u;
} bit_float_t;

float bit2float(unsigned
u) {
  bit_float_t arg;
  arg.u = u;
  return arg.f;
}u

f
0 4 unsigned float2bit(float

f) {
  bit_float_t arg;
  arg.f = f;
  return arg.u;
}

Using Union to Access Bit Patterns

 Get direct access to bit
representation of float

 bit2float generates float with
given bit pattern
 NOT the same as (float) u

 float2bit generates bit pattern
from float
 NOT the same as (unsigned) f



13

Byte Ordering Revisited

IdeaIdea
 Short/long/quad words stored in memory as 2/4/8

consecutive bytes
 Which is most (least) significant?
 Can cause problems when exchanging binary data between

machines

Big Big EndianEndian
 Most significant byte has lowest address
 PowerPC, Sparc

Little Little EndianEndian
 Least significant byte has lowest address
 Intel x86, Alpha



14

Byte Ordering Example
    union {
      unsigned char c[8];
      unsigned short s[4];
      unsigned int i[2];
      unsigned long l[1];
    } dw;

c[3]
s[1]

i[0]

c[2]c[1]
s[0]

c[0] c[7]
s[3]

i[1]

c[6]c[5]
s[2]

c[4]

l[0]



15

Byte Ordering Example (Cont).
int j;
for (j = 0; j < 8; j++)
dw.c[j] = 0xf0 + j;

printf("Characters 0-7 ==
[0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x]\n",
    dw.c[0], dw.c[1], dw.c[2], dw.c[3],
    dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf("Shorts 0-3 ==
[0x%x,0x%x,0x%x,0x%x]\n",
    dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf("Ints 0-1 == [0x%x,0x%x]\n",
    dw.i[0], dw.i[1]);

printf("Long 0 == [0x%lx]\n",
    dw.l[0]);



16

Byte Ordering on x86
Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts     0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints       0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long       0   == [0xf3f2f1f0]

Output on Pentium:

f0 f1 f2 f3 f4 f5 f6 f7
c[3]

s[1]

i[0]

LSB MSB
c[2]c[1]

s[0]

c[0]

LSB MSB

LSB MSB
c[7]

s[3]

i[1]

LSB MSB
c[6]c[5]

s[2]

c[4]

LSB MSB

LSB MSB

Print

l[0]
LSB MSB



17

Byte Ordering on Sun
Big Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts     0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7]
Ints       0-1 == [0xf0f1f2f3,0xf4f5f6f7]
Long       0   == [0xf0f1f2f3]

Output on Sun:

c[3]

s[1]

i[0]

LSBMSB
c[2]c[1]

s[0]

c[0]

MSB LSB

LSB MSB
c[7]

s[3]

i[1]

LSB MSB
c[6]c[5]

s[2]

c[4]

MSB LSB

LSB MSB

f0 f1 f2 f3 f4 f5 f6 f7

Print

l[0]
MSB LSB



18

Byte Ordering on Alpha
Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts     0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints       0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long       0   == [0xf7f6f5f4f3f2f1f0]

Output on Alpha:

c[3]

s[1]

i[0]

LSB MSB

c[2]c[1]

s[0]

c[0]

LSB MSB

LSB MSB

c[7]

s[3]

i[1]

LSB MSB

c[6]c[5]

s[2]

c[4]

LSB MSB

LSB MSB

f0 f1 f2 f3 f4 f5 f6 f7

Print

l[0]
LSB MSB



19

Summary
Arrays in CArrays in C

 Contiguous allocation of memory
 Pointer to first element
 No bounds checking

Compiler OptimizationsCompiler Optimizations
 Compiler often turns array code into pointer code (zd2int)
 Uses addressing modes to scale array indices
 Lots of tricks to improve array indexing in loops

StructuresStructures
 Allocate bytes in order declared
 Pad in middle and at end to satisfy alignment

UnionsUnions
 Overlay declarations
 Way to circumvent type system



Extra slides



21

Dynamic Nested Arrays
StrengthStrength

 Can create matrix of
arbitrary size

ProgrammingProgramming
 Must do index

computation explicitly

PerformancePerformance
 Accessing single element

costly
 Must do multiplication

int * new_var_matrix(int n)
{
  return (int *)
    calloc(sizeof(int), n*n);
}

int var_ele
  (int *a, int i,
   int j, int n)
{
  return a[i*n+j];
}

movl 12(%ebp),%eax # i
movl 8(%ebp),%edx # a
imull 20(%ebp),%eax # n*i
addl 16(%ebp),%eax # n*i+j
movl (%edx,%eax,4),%eax # Mem[a+4*(i*n+j)]



22

Dynamic Array Multiplication

Without OptimizationsWithout Optimizations
 Multiplies

 2 for subscripts
 1 for data

 Adds
 4 for array indexing
 1 for loop index
 1 for data

/* Compute element i,k of
   variable matrix product */
int var_prod_ele
  (int *a, int *b,
   int i, int k, int n)
{
  int j;
  int result = 0;
  for (j = 0; j < n; j++)
    result +=
      a[i*n+j] * b[j*n+k];
  return result;
}

A
(i,*)

B

(*,k)

Column-wise
Row-wise



23

Optimizing Dynamic Array Mult.

OptimizationsOptimizations
 Performed when set

optimization level to -O2

Code MotionCode Motion
 Expression i*n can be

computed outside loop

Strength ReductionStrength Reduction
 Incrementing j has effect of

incrementing j*n+k by n

PerformancePerformance
 Compiler can optimize

regular access patterns

{
  int j;
  int result = 0;
  for (j = 0; j < n; j++)
    result +=
      a[i*n+j] * b[j*n+k];
  return result;
}

{
  int j;
  int result = 0;
  int iTn = i*n;
  int jTnPk = k;
  for (j = 0; j < n; j++) {
    result +=
      a[iTn+j] * b[jTnPk];
    jTnPk += n;
  }
  return result;
}


