Systems |

Datapath Design |

Topics
m Sequential instruction execution cycle
m Instruction mapping to hardware
m Instruction decoding

Overview

How do we build a digital computer?
m Hardware building blocks: digital logic primitives
m Instruction set architecture: what HW must implement

Principled approach

m Hardware designed to implement one instruction at a time
® Plus connect to next instruction

m Decompose each instruction into a series of steps
e Expect that most steps will be common to many instructions

Extend design from there

m Overlap execution of multiple instructions (pipelining)
e Later in this course

m Parallel execution of many instructions
® In more advanced computer architecture course

Y86 Instruction Set

Byte 0 5
nop 010 a4l
halt 1|0
subl
rrmovl rA, rB 21 0|rA|rB (’<
andl
irmovl V, rB 31018 /|rB Vv
9 xorl
rmmovl rA, D (rB) 41 0]|rA|rB D
([Jmp
mrmovl D@B), rA | 5| 0 |rA|rB D
Jle
OP1 rA, B 6 | fn|rA|rB
jl
jxXx Dest 7 | fn Dest \
> je
call Dest 8 10 Dest <
jne
ret 910
Jge
pushl rA A|O0]|rA]| 8
_J9
popl rA B|O|rA| 8

Building Blocks

fun

)
Combinational Logic A=) _ s
m Compute Boolean functions of L —
inputs 5. U —
m Continuously respond to input —0
chan MUX —
ges
= Operate on data and implement a4
control
Storage Elements e
SrcA A W
m Store bits | Register S RN
m Addressable memories valB file —
B
m Non-addressable registers = I-—Clock |

m Loaded only as clock rises Clock

Hardware Control Language

m Very simple hardware description language

m Can only express limited aspects of hardware operation
e Parts we want to explore and modify

Data Types

m bool: Boolean
® a,b,c,...

m int: words
®ABC,...
® Does not specify word size---bytes, 32-bit words, ...

Statements
B bool a = bool-expr ;

B int A = int-expr ;

HCL Operations

m Classify by type of value returned

Boolean Expressions
m Logic Operations

® a && b,a || b,'a
m Word Comparisons
@A == B,A '!= B,A < B,A <= B,A > B,A > B

m Set Membership
@ A in { B, C, D}
» SameasA == B || A ==C || A == D

Word Expressions

m Case expressions
® [a: A; b: B; c¢c: C]]
e Evaluate test expressions a, b, ¢, ... in sequence
® Return word expression A, B, C, ... for first successful test

SEQ Hardware
Structure

State

m Program counter register (PC)
m Condition code register (CC)

m Register File
m Memories

® Access same memory space
e Data: for reading/writing program

data

e Instruction: for reading
instructions

Instruction Flow

m Read instruction at address

specified by PC
m Process through stages
m Update program counter

newPC

PC

valEgialM

Write back

Data
memory

Memory

Addr, Data

Execute

aluA, aluB

valA valB

D d srcA, srcB
ecode dstA, dstB

fle |

icode ifun valP
rA, B

valC

Inst PC

Fetch me increment

SEQ Stages

Fetch

m Read instruction from instruction
memory

Decode

m Read program registers

Execute

m Compute value or address

Memory

m Read or write data

Write Back

PC

= Write program registers

= Update program counter

newPC

PC

valg valM

Write back

Data

Memory memory

Addr, Data

Execute

Decode

icode ifun
rA , rB
valC

Instruction

Fetch memoy

Instruction Decoding

Optional Optional
(A > A
510 |rA|rB D
icode/
ifun
rA
rB
valC

Instruction Format
m Instruction byte icode:ifun
m Optional register byte rA:rB
m Optional constant word valC

Executing Arith./Logical Operation

OPl rA, rB 6 fn|rA|rB
Fetch Memory
m Read 2 bytes m Do nothing
Decode Write back
m Read operand registers m Update register
Execute PC Update
m Perform operation m Increment PC by 2

m Set condition codes m Why?

10

Stage Computation: Arith/Log. Ops

OPIrA, rB
icode:ifun < M,[PC]
rA:rB < M,[PC+1]
Fetch
valP < PC+2
valA < R[rA]
Decode |, a1 < RrB]
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back
PC update |PC < valP

Read instruction byte
Read register byte

Compute next PC

Read operand A

Read operand B

Perform ALU operation

Set condition code register

Write back result

Update PC

m Formulate instruction execution as sequence of simple

steps

m Use same general form for all instructions

11

Executing rmmovl

rmmovl rA, D(rB)| 4 | O |rA|rB D
Fetch Memory
m Read 6 bytes m Write to memory
Decode Write back
m Read operand registers m Do nothing
Execute PC Update

m Compute effective address m Increment PC by 6

12

Stage Computation:

rmmovl rA, D(rB)

icode:ifun < M,[PC]
rA:rB < M,[PC+1]
Fetch valC < M,[PC+2]
valP < PC+6
valA < R[rA]
Decode |, a1 < RrB]
valE < valB + valC
Execute
Memory M,[valE] < valA
Write
back
PC update |PC < valP

rmmovl

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

Update PC

m Use ALU for address computation

13

Executing popl

popl rA

Fetch
m Read 2 bytes

Decode
m Read stack pointer

Execute
m Increment stack pointer by 4

O|rA| 8

Memory
m Read from old stack pointer

Write back
m Update stack pointer
m Write result to register

PC Update
m Increment PC by 2

14

Stage Computation: popl

popl rA
icode:ifun < M,[PC] Read instruction byte
rA:rB < M,[PC+1 Read register byte
Fetch il] d y
valP < PC+2 Compute next PC
valA < R[%esp] Read stack pointer
Decode i
valB < R [$esp] Read stack pointer
valE < valB + 4 Increment stack pointer
Execute
Memory valM < M,[valA] Read from stack
Write R[%esp] < valE Update stack pointer
back R[rA] < valM Write back result
PC update |PC < valP Update PC

m Use ALU to increment stack pointer

m Must update two registers
® Popped value
® New stack pointer

15

Summary

Today

m Sequential instruction execution cycle
m Instruction mapping to hardware
m Instruction decoding

Next time

m Control flow instructions
m Hardware for sequential machine (SEQ)

16

