
Pipelining V

TopicsTopics
 Branch prediction
 State machine design

Systems I

2

Branch Prediction
Until now - we have assumed a Until now - we have assumed a ““predict takenpredict taken”” strategy strategy

for conditional branchesfor conditional branches
 Compute new branch target and begin fetching from there
 If prediction is incorrect, flush pipeline and begin refetching

However, there are other strategiesHowever, there are other strategies
 Predict not-taken
 Combination (quasi-static)

 Predict taken if branch backward (like a loop)
 Predict not taken if branch forward

3

Branching Structures
Predict not taken works well for Predict not taken works well for ““top of the looptop of the loop””

branching structuresbranching structures Loop: cmpl %eax, %edx
 je Out
 1nd loop instr
 .
 .
 last loop instr
 jmp Loop
Out: fall out instr

 But such loops have jumps at
the bottom of the loop to return
to the top of the loop – and
incur the jump stall overhead

Predict not taken doesnPredict not taken doesn ʼ̓t work well for t work well for ““bottom of thebottom of the
looploop”” branching structures branching structures Loop: 1st loop instr

 2nd loop instr
 .
 .
 last loop instr
 cmpl %eax, %edx
 jne Loop
 fall out instr

4

Branch Prediction Algorithms
Static Branch PredictionStatic Branch Prediction

 Prediction (taken/not-taken) either assumed or encoded into
program

Dynamic Branch PredictionDynamic Branch Prediction
 Uses forms of machine learning (in hardware) to predict

branches
 Track branch behavior

 Past history of individual branches
 Learn branch biases
 Learn patterns and correlations between different branches
 Can be very accurate (95% plus) as compared to less than

90% for static

5

IM

PC

BHT

IR

Prediction

update

Simple Dynamic Predictor
Predict branch based on pastPredict branch based on past
history of branchhistory of branch
Branch history tableBranch history table

 Indexed by PC (or fraction of
it)

 Each entry stores last
direction that indexed
branch went (1 bit to encode
taken/not-taken)

 Table is a cache of recent
branches

 Buffer size of 4096 entries
are common (track 4K
different branches)

6

Multi-bit predictors
A A ʻ̒predict same as lastpredict same as last ʼ̓ strategy strategy
gets two mispredicts on each loopgets two mispredicts on each loop
 Predict NTTT…TTT
 Actual TTTT…TTN

Can do much better by addingCan do much better by adding
inertiainertia to the predictor to the predictor
 e.g., two-bit saturating counter
 Predict TTTT…TTT
 Use two bits to encode:

 Strongly taken (T2)
 Weakly taken (T1)
 Weakly not-taken (N1)
 Strongly not-taken (N2)

for(j=0;j<30;j++) {for(j=0;j<30;j++) {

……

}}

N2 N1 T1 T2

T T TT

NN N N

State diagram to representing states and transitions

7

How do we build this in Hardware?

This is a sequential logic circuit that can be formulated as a stateThis is a sequential logic circuit that can be formulated as a state
machinemachine
 4 states (N2, N1, T1, T2)
 Transitions between the states based on action “b”

General form of state machine:General form of state machine:

N2 N1 T1 T2

T T TT

NN N N

State
Variables

(Flip-flops)

Comb.
Logic

inputs outputs

8

State Machine for Branch Predictor
4 states - can encode in two state bits <S1, S0>4 states - can encode in two state bits <S1, S0>

 N2 = 00, N1 = 01, T1 = 10, T2 = 11
 Thus we only need 2 storage bits (flip-flops in last slide)

Input: b = 1 if last branch was taken, 0 if not takenInput: b = 1 if last branch was taken, 0 if not taken
Output:Output: pp = 1 if predict taken, 0 if predict not taken= 1 if predict taken, 0 if predict not taken
Now - we just need combinational logic equations for:Now - we just need combinational logic equations for:

 p, S1new, S0new, based on b, S1, S0

9

Combinational logic for state
machine
p =1 if statep =1 if state isis T2 or T1T2 or T1
thus p =thus p = S1 (according toS1 (according to

encodings)encodings)
The state variables S1, S0The state variables S1, S0

are governed by the truthare governed by the truth
table that implements thetable that implements the
state diagramstate diagram
 S1new = S1*S0 + S1*b + S0*b
 S0new = S1*S0ʼ + S0ʼ*S1ʼ*b +

S0*S1*b

11

11

11

11

00

00

00

00

pp

11

00

11

11

00

00

11

00

S0S0newnew

11

11

11

11

00

00

00

00

S1S1

111111

110011

111100

000000

S1S1newnewbbS0S0

111111

000011

001100

000000

10

IM

PC

BHT

IR

Prediction

update

Enhanced Dynamic Predictor
Replace simple table of 1 bitReplace simple table of 1 bit
histories with table of 2 bit statehistories with table of 2 bit state
bitsbits
State transition logic can beState transition logic can be
shared across all entries inshared across all entries in
tabletable

 Read entry out
 Apply combinational logic
 Write updated state bits

back into table

11

YMSBP
Yet more sophisticated branch predictorsYet more sophisticated branch predictors
Predictors that recognize patternsPredictors that recognize patterns

 eg. if last three instances of a given branches were NTN, then
predict taken

Predictors that correlate between multiple branchesPredictors that correlate between multiple branches
 eg. if the last three instances of any branch were NTN, then predict

taken

Predictors that correlatePredictors that correlate weight differentweight different past branches differentlypast branches differently
 e.g. if the branches 1, 4, and 8 ago were NTN, then predict taken

Hybrid predictors that are composed of multiple differentHybrid predictors that are composed of multiple different
predictorspredictors
 e.g. two different predictors run in parallel and a third predictor

predicts which one to use

More sophisticated learning algorithmsMore sophisticated learning algorithms

12

Summary
TodayToday

 Branch mispredictions cost a lot in performance
 CPU Designers willing to go to great lengths to improve

prediction accuracy
 Predictors are just state machines that can be designed

using combinational logic and flip-flops

