
Performance Analysis

TopicsTopics
 Measuring performance of systems
 Reasoning about performance
 Amdahlʼs law

Systems I

2

Evaluation Tools
Benchmarks, traces, & mixesBenchmarks, traces, & mixes

 macrobenchmarks & suites
 application execution time

 microbenchmarks
 measure one aspect of

performance
 traces

 replay recorded accesses
» cache, branch, register

Simulation at many levelsSimulation at many levels
 ISA, cycle accurate, RTL, gate, circuit

 trade fidelity for simulation rate

Area and delay estimationArea and delay estimation
AnalysisAnalysis

 instructions, throughput, Amdahlʼs law
 e.g., queuing theory

MOVE 39%
BR 20%
LOAD 20%
STORE 10%
ALU 11%

LD 5EA3
ST 31FF
….
LD 1EA2
….

3

Metrics of Evaluation
Level of design Level of design ⇒⇒ performance metric performance metric

ExamplesExamples
 Applications perspective

 Time to run task (Response Time)
 Tasks run per second (Throughput)

 Systems perspective
 Millions of instructions per second (MIPS)
 Millions of FP operations per second (MFLOPS)

 Bus/network bandwidth: megabytes per second
 Function Units: cycles per instruction (CPI)
 Fundamental elements (transistors, wires, pins): clock rate

4

Basis of Evaluation

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

• representative
• very specific
• non-portable
• difficult to run, or
 measure
• hard to identify cause

• portable
• widely used
• improvements
useful in reality

• easy to run, early in
design cycle

• identify peak
capability and
potential bottlenecks

•less representative

• easy to “fool”

• “peak” may be a long
way from application
performance

Slide courtesy of D. Patterson

5

Some Warnings about Benchmarks
Benchmarks measure the Benchmarks measure the wholewhole
systemsystem

 application
 compiler
 operating system
 architecture
 implementation

Popular benchmarks typicallyPopular benchmarks typically
reflect yesterdayreflect yesterdayʼ̓s programss programs

 what about the programs
people are running today?

 need to design for
tomorrowʼs problems

Benchmark timings areBenchmark timings are
sensitivesensitive

 alignment in cache
 location of data on disk
 values of data

Danger of Danger of inbreedinginbreeding or or
positive feedbackpositive feedback

 if you make an operation
fast (slow) it will be used
more (less) often
 therefore you make it faster

(slower)
» and so on, and so on…

 the optimized NOP

6

Know what you are measuring!
Compare apples to applesCompare apples to apples

ExampleExample
 Wall clock execution time:

 User CPU time
 System CPU time
 Idle time (multitasking, I/O)

csh> time latex lecture2.tex
csh> 0.68u 0.05s 0:01.60 45.6%

% CPU time
elapsed

system
user

7

Two notions of “performance”

° Time to do the task (Execution Time)
– execution time, response time, latency

° Tasks per day, hour, week, sec, ns. .. (Performance)
– throughput, bandwidth

 Response time and throughput often are in opposition

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

Which has higher performance?

Slide courtesy of D. Patterson

8

Brief History of Benchmarking
Early days (1960s)Early days (1960s)

 Single instruction execution time
 Average instruction time [Gibson

1970]
 Pure MIPS (1/AIT)

Simple programs(early 70s)Simple programs(early 70s)
 Synthetic benchmarks

(Whetstone, etc.)
 Kernels (Livermore Loops)

Relative Performance (late 70s)Relative Performance (late 70s)
 VAX 11/780 ≡ 1-MIPS

 but was it?
 MFLOPs

““RealReal”” Applications (late 80s- Applications (late 80s-
now)now)

 SPEC
 Desktop
 Scientific
 Java
 Media
 Parallel
 etc.

 TPC
 Transaction Processing

 Graphics
 3D-Mark
 Real games (Assassinʼs

Creed, Call of Duty, Flight
Simulator, etc.)

9

SPEC: Standard Performance Evaluation
Corporation (www.spec.org)
System Performance and Evaluation CooperativeSystem Performance and Evaluation Cooperative

 HP, DEC, Mips, Sun
 Portable O/S and high level languages

Spec89 Spec89 ⇒⇒ Spec92 Spec92 ⇒⇒ Spec95 Spec95 ⇒⇒ Spec2000 Spec2000 ⇒⇒ SPEC2006.... SPEC2006....

CategoriesCategories
 CPU (most popular)
 JVM, JBB
 SpecWeb - web server performance
 SFS - file server performance

Benchmarks change with the times and technologyBenchmarks change with the times and technology
 Elimination of Matrix 300
 Compiler restrictions

10

How to Compromise a Benchmark

0

100

200

300

400

500

600

700

800

gcc spice nasa7 matrix300 fpppp

S
p

e
c

8
9

 P
e

rf
o

rm
a

n
c

e
 R

a
ti

o

compiled

enhanced

11

The compiler reorganized the code!
Change the memory system performanceChange the memory system performance

 Matrix multiply cache blocking
 You will see this later in “performance

programming”

Before

After

12

Spec2006 Suite
12 Integer benchmarks (C/C++)12 Integer benchmarks (C/C++)

 compression
 C compiler
 Perl interpreter
 Database
 Chess
 Bioinformatics

17 FP applications (Fortran/C)17 FP applications (Fortran/C)
 Shallow water model
 3D graphics
 Quantum chromodynamics
 Computer vision
 Speech recognition

CharacteristicsCharacteristics
 Computationally

intensive
 Little I/O
 Relatively small code

size
 Variable data set sizes

13

Improving Performance:
Fundamentals
Suppose we have a machine with two instructionsSuppose we have a machine with two instructions

 Instruction A executes in 100 cycles
 Instruction B executes in 2 cycles

We want better performanceWe want better performance……..
 Which instruction do we improve?

14

CPU Performance Equation

3 components to execution time:3 components to execution time:

Factors affecting CPU execution time:Factors affecting CPU execution time:

Cycle

Seconds

nInstructio

Cycles

Program

nsInstructio

Program

Seconds
 timeCPU !!==

Inst. Count CPI Clock Rate

Program X

Compiler X (X)

Inst. Set X X (X)

Organization X X

MicroArch X X

Technology X

• Consider all three elements when optimizing
• Workloads change!

15

Cycles Per Instruction (CPI)

Depends on the instructionDepends on the instruction

Average cycles per instructionAverage cycles per instruction

Example:Example:

RateClock n instructio of timeExecution != iCPI
i

!
=

="=
n

i tot

i

iii

IC

IC
FFCPICPI

1

 where

Op Freq Cycles CPI(i) %time

ALU 50% 1 0.5 33%

Load 20% 2 0.4 27%

Store 10% 2 0.2 13%

Branch 20% 2 0.4 27%

CPI(total) 1.5

16

Amdahlʼs Law
How much performance could you getHow much performance could you get if you could speed up some partif you could speed up some part

of your program?of your program?
Performance improvements depend on:Performance improvements depend on:

 how good is enhancement
 how often is it used

Speedup due to enhancement E (fraction Speedup due to enhancement E (fraction pp sped up by factor sped up by factor SS):):

E w/out Perf

E w/ Perf

E w/ ExTime

E w/out ExTime
 Speedup(E) ==

() !"

#
$%

&
+'(=
S

p
pExTimeExTime oldnew 1

()
S

p
p

ExTime

ExTime
ESpeedup

new

old

+!

==

1

1
)(

17

Amdahlʼs Law: Example
FP instructions improved by 2xFP instructions improved by 2x
ButBut…….only 10% of instructions are FP.only 10% of instructions are FP

Speedup bounded bySpeedup bounded by

oldoldnew
ExTimeExTimeExTime !="

#

$
%
&

'
+!= 95.0
2

1.0
9.0

053.1
95.0

1
==totalSpeedup

enhancednot timeoffraction

1

18

Amdahlʼs Law: Example 2

• Parallelize (vectorize) some portion of your program
• Make it 100x faster?

• How much faster does the whole program get?

!"

#
$%

&
+'=
S

p
pTT)1(01

Speedup vs. Vector Fraction

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of code vectorizable

S
p

e
e
d

u
p

19

Amdahlʼs Law: Summary message
Make the Common Case fastMake the Common Case fast

Examples:Examples:
 All instructions require instruction fetch, only fraction

require data
⇒ optimize instruction access first

– Data locality (spatial, temporal), small memories faster
⇒storage hierarchy: most frequent accesses to small, local

memory

20

Is Speed the Last Word in
Performance?
Depends on the application!Depends on the application!
CostCost

 Not just processor, but other components (ie. memory)

Power consumptionPower consumption
 Trade power for performance in many applications

CapacityCapacity
 Many database applications are I/O bound and disk bandwidth is

the precious commodity

Throughput (a form of speed)Throughput (a form of speed)
 An individual program isnʼt faster, but many more programs can be

completed per unit time
 Example: Google search (processes many, many searches

simultaneously)

21

Summary
TodayToday

 Performance analysis overview
 Amdahlʼs law

Next TimeNext Time
 Making the processor faster: pipelining

