
Cache Organization

TopicsTopics
 Generic cache memory organization
 Direct mapped caches
 Set associative caches
 Impact of caches on programming

Systems I

2

Cache Vocabulary
CapacityCapacity
Cache block (Cache block (aka aka cache line)cache line)
AssociativityAssociativity
Cache setCache set
IndexIndex
TagTag
Hit rateHit rate
Miss rateMiss rate
Replacement policyReplacement policy

3

General Org of a Cache Memory

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0:

B = 2b bytes
per cache block

E lines
per set

S = 2s sets

t tag bits
per line

1 valid bit
per line

Cache size: C = B x E x S data bytes

• • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

Cache is an array
of sets.

Each set contains
one or more lines.

Each line holds a
block of data.

4

Addressing Caches
t bits s bits b bits

0m-1

<tag> <set index> <block offset>

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
The word at address A is in the cache if
the tag bits in one of the <valid> lines in
set <set index> match <tag>.

The word contents begin at offset
<block offset> bytes from the beginning
of the block.

5

Direct-Mapped Cache
Simplest kind of cacheSimplest kind of cache
Characterized by exactly one line per set.Characterized by exactly one line per set.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

E=1 lines per setcache block

cache block

cache block

6

Accessing Direct-Mapped Caches
Set selectionSet selection

 Use the set index bits to determine the set of interest.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:
t bits s bits

0 0 0 0 1
0m-1

b bits

tag set index block offset

selected set

cache block

cache block

cache block

7

Accessing Direct-Mapped Caches
Line matching and word selectionLine matching and word selection

 Line matching: Find a valid line in the selected set with a
matching tag

 Word selection: Then extract the word

1

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

(3) If (1) and (2), then
cache hit,

and block offset
selects

starting byte.

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the cache

line must match the
tag bits in the address

0110 w3w0 w1 w2

30 1 2 74 5 6

8

Direct-Mapped Cache Simulation
M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 entry/set

Address trace (reads):
0 [00002], 1 [00012], 13 [11012], 8 [10002], 0 [00002]

x
t=1 s=2 b=1

xx x

1 0 m[1] m[0]
v tag data

0 [00002] (miss)

(1)
1 0 m[1] m[0]
v tag data

1 1 m[13] m[12]

13 [11012] (miss)

(3)

1 1 m[9] m[8]
v tag data

8 [10002] (miss)

(4)
1 0 m[1] m[0]
v tag data

1 1 m[13] m[12]

0 [00002] (miss)

(5)

0 M[0-1]1

1 M[12-13]1

1 M[8-9]1

1 M[12-13]1

0 M[0-1]1

1 M[12-13]1

0 M[0-1]1

9

Why Use Middle Bits as Index?

High-Order Bit IndexingHigh-Order Bit Indexing
 Adjacent memory lines would map

to same cache entry
 Poor use of spatial locality

Middle-Order Bit IndexingMiddle-Order Bit Indexing
 Consecutive memory lines map to

different cache lines
 Can hold C-byte region of address

space in cache at one time

4-line Cache High-Order
Bit Indexing

Middle-Order
Bit Indexing

00
01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

10

Set Associative Caches
Characterized by more than one line per setCharacterized by more than one line per set

valid tag
set 0: E=2 lines per set

set 1:

set S-1:

• • •

cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

11

Accessing Set Associative Caches
Set selectionSet selection

 identical to direct-mapped cache

valid

valid

tag

tag
set 0:

valid

valid

tag

tag
set 1:

valid

valid

tag

tag
set S-1:

• • •

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

Selected set

cache block

cache block

cache block

cache block

cache block

cache block

12

Accessing Set Associative Caches
Line matching and word selectionLine matching and word selection

 must compare the tag in each valid line in the selected set.

1 0110 w3w0 w1 w2

1 1001

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

=1? (1) The valid bit must be set.

= ?
(2) The tag bits in one

of the cache lines must
match the tag bits in

the address

(3) If (1) and (2), then
cache hit, and

 block offset selects
starting byte.

30 1 2 74 5 6

13

Cache Performance Metrics
Miss RateMiss Rate

 Fraction of memory references not found in cache
(misses/references)

 Typical numbers:
 3-10% for L1
 can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit TimeHit Time
 Time to deliver a line in the cache to the processor (includes

time to determine whether the line is in the cache)
 Typical numbers:

 1-3 clock cycle for L1
 5-12 clock cycles for L2

Miss PenaltyMiss Penalty
 Additional time required because of a miss

 Typically 100-300 cycles for main memory

14

Memory System Performance

Assume 1-level cache, 90% hit rate, 1 cycle hitAssume 1-level cache, 90% hit rate, 1 cycle hit
time, 200 cycle miss penaltytime, 200 cycle miss penalty

AMAT = 21 cycles!!! - even though 90% only takeAMAT = 21 cycles!!! - even though 90% only take
one cycleone cycle

!

Taccess = (1" pmiss)thit + pmisstmiss

!

tmiss = thit + t penalty

Average Memory Access Time (AMAT)Average Memory Access Time (AMAT)

15

!

CPI =1.0 + lp +mp+ rp

Memory System Performance - II
How does AMAT affect overall performance?How does AMAT affect overall performance?
Recall the CPI equation (pipeline efficiency)Recall the CPI equation (pipeline efficiency)

 load/use penalty (lp) assumed memory access of 1 cycle
 Further - we assumed that all load instructions were 1 cycle
 More realistic AMAT (20+ cycles), really hurts CPI and overall

performance

1.981.9821+121+10.30.30.300.30lplpLoad/UseLoad/Use

6.616.61Total penaltyTotal penalty
0.060.06331.01.00.020.02rprpReturnReturn

0.160.16220.40.40.200.20mpmpMispredictMispredict

4.414.4121210.70.70.300.30lplpLoadLoad

ProductProductStallsStallsConditionCondition
FrequencyFrequency

InstructionInstruction
FrequencyFrequency

NameNameCauseCause

16

!

Taccess = (1" pmiss)thit + pmisstmiss

!

tmiss = thit + t penalty

Memory System Performance - III

How to reduce AMAT?How to reduce AMAT?
 Reduce miss rate
 Reduce miss penalty
 Reduce hit time

There have been numerous inventions targeting each ofThere have been numerous inventions targeting each of
thesethese

17

int sumarrayrows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

int sumarraycols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

Miss rate = Miss rate = 1/4 = 25% 100%

Writing Cache Friendly Code
Can write code to improve miss rateCan write code to improve miss rate
Repeated references to variables are good (temporal locality)Repeated references to variables are good (temporal locality)
Stride-1 reference patterns are good (spatial locality)Stride-1 reference patterns are good (spatial locality)
Examples:Examples:

 cold cache, 4-byte words, 4-word cache blocks

18

Questions to think about
What happens when there is a miss and the cache hasWhat happens when there is a miss and the cache has

no free lines?no free lines?
 What do we evict?

What happen on a store miss?What happen on a store miss?
What if we have a What if we have a multicore multicore chip where the processingchip where the processing

cores sharecores share the L2 cache but have private L1the L2 cache but have private L1
caches?caches?
 What are some bad things that could happen?

19

Concluding Observations
Programmer can optimize for cache performanceProgrammer can optimize for cache performance

 How data structures are organized
 How data are accessed

 Nested loop structure
 Blocking is a general technique

All systems favor All systems favor ““cache friendly codecache friendly code””
 Getting absolute optimum performance is very platform

specific
 Cache sizes, line sizes, associativities, etc.

 Can get most of the advantage with generic code
 Keep working set reasonably small (temporal locality)
 Use small strides (spatial locality)

