Bits and Bytes

Topics

- Why bits?
- Representing information as bits
 - Binary/Hexadecimal
 - Byte representations
 - numbers
 - characters and strings
 - Instructions
- Bit-level manipulations
 - Boolean algebra
 - Expressing in C
Why Don’t Computers Use Base 10?

Base 10 Number Representation
- That’s why fingers are known as “digits”
- Natural representation for financial transactions
 - Floating point number cannot exactly represent $1.20
- Even carries through in scientific notation
 - 1.5213 X 10^4

Implementing Electronically
- Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
- Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
- Messy to implement digital logic functions
 - Addition, multiplication, etc.
Binary Representations

Base 2 Number Representation

- Represent 15213_{10} as 111011101101101_2
- Represent 1.20_{10} as $1.0011001100110011[0011]..._2$
- Represent 1.5213×10^4 as $1.1101101101101_2 \times 2^{13}$

Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires
- Straightforward implementation of arithmetic functions
Encoding Byte Values

Byte = 8 bits

- Binary: \(00000000_2\) to \(11111111_2\)
- Decimal: \(0_{10}\) to \(255_{10}\)
- Hexadecimal: \(00_{16}\) to \(FF_{16}\)

- Base 16 number representation
- Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
- Write \(FA1D37B_{16}\) in C as \(0xFA1D37B\)
 - Or \(0xFA1D37B\)
Machine Words

Machine Has “Word Size”

- Nominal size of integer-valued data
 - Including addresses
- Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems are 64 bits (8 bytes)
 - Potentially address ≈ 1.8 × 10^{19} bytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

Addresses Specify Byte Locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data Representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long int</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
</tr>
<tr>
<td>char *</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

» Or any other pointer
Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions

- Sun’s, Mac’s are “Big Endian” machines
 - Least significant byte has highest address
- Alphas, PC’s are “Little Endian” machines
 - Least significant byte has lowest address
Byte Ordering Example

Big Endian
- Least significant byte has highest address

Little Endian
- Least significant byte has lowest address

Example
- Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100
Representing Integers

int A = 15213;
int B = -15213;
long int C = 15213;

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3B6D

Two’s complement representation
(Covered next lecture)
Representing Pointers (addresses)

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Address</td>
<td>1 F F F F F C A 0</td>
<td>0001 1111 1111 1111 1111 1111 1100 1010 0000</td>
</tr>
<tr>
<td>Sun Address</td>
<td>E F F F F F B 2 C</td>
<td>1110 1111 1111 1111 1111 1111 1011 0010 1100</td>
</tr>
<tr>
<td>Linux Address</td>
<td>B F F F F F 8 D 4</td>
<td>1011 1111 1111 1111 1111 1111 1000 1101 0100</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects
Representing Floats

Float F = 15213.0;

IEEE Single Precision Floating Point Representation

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines
Can see some relation to integer representation, but not obvious
Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Other encodings exist, but uncommon
 - Character “0” has code 0x30
 » Digit \(i \) has code 0x30+\(i \)
- String should be null-terminated
 - Final character = 0

Compatibility

- Byte ordering not an issue
 - Data are single byte quantities
- Text files generally platform independent
 - Except for different conventions of line termination character(s)!

```c
char S[6] = "15213";
```
Machine-Level Code Representation

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch

- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)

- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
int sum(int x, int y)
{
 return x+y;
}

- For this example, Alpha & Sun use two 4-byte instructions
 - Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

Different machines use totally different instructions and encodings
Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And

- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

- \(A \lor B = 1 \) when either \(A=1 \) or \(B=1 \)

| \(| | 0 | 1 |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 1 |

Not

- \(\sim A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th>(\sim)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

- \(A \oplus B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master’s Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Connection when

\[A \& \sim B \lor \sim A \& B \]

\[= A \uparrow B \]
Integer Algebra

Integer Arithmetic

- \(\langle \mathbb{Z}, +, *, -, 0, 1 \rangle \) forms a “ring”
- Addition is “sum” operation
- Multiplication is “product” operation
- \(- \) is additive inverse
- 0 is identity for sum
- 1 is identity for product
Boolean Algebra

- \(\langle \{0,1\}, \lor, \land, \sim, 0, 1 \rangle \) forms a “Boolean algebra”
- Or is “sum” operation
- And is “product” operation
- \(\sim \) is “complement” operation (not additive inverse)
- 0 is identity for sum
- 1 is identity for product
Boolean Algebra \sim Integer Ring

- **Commutativity**
 \[A \lor B = B \lor A \]
 \[A \land B = B \land A \]
 \[A + B = B + A \]
 \[A \ast B = B \ast A \]

- **Associativity**
 \[(A \lor B) \lor C = A \lor (B \lor C) \]
 \[(A \land B) \land C = A \land (B \land C) \]
 \[(A + B) + C = A + (B + C) \]
 \[(A \ast B) \ast C = A \ast (B \ast C) \]

- **Product distributes over sum**
 \[A \land (B \lor C) = (A \land B) \lor (A \land C) \]
 \[A \ast (B + C) = A \ast B + A \ast C \]

- **Sum and product identities**
 \[A \lor 0 = A \]
 \[A + 0 = A \]
 \[A \land 1 = A \]
 \[A \ast 1 = A \]

- **Zero is product annihilator**
 \[A \land 0 = 0 \]
 \[A \ast 0 = 0 \]

- **Cancellation of negation**
 \[\sim (\sim A) = A \]
 \[- (\sim A) = A \]
Boolean Algebra ≠ Integer Ring

- **Boolean: Sum distributes over product**
 \[A \lor (B \land C) = (A \lor B) \land (A \lor C) \]
 \[A + (B \ast C) \neq (A + B) \ast (B + C) \]

- **Boolean: Idempotency**
 \[A \land A = A \]
 \[A + A \neq A \]
 “A is true” or “A is true” = “A is true”
 \[A \land A = A \]
 \[A \ast A \neq A \]

- **Boolean: Absorption**
 \[A \land (A \lor B) = A \]
 \[A + (A \ast B) \neq A \]
 “A is true” or “A is true and B is true” = “A is true”
 \[A \land (A \lor B) = A \]
 \[A \ast (A + B) \neq A \]

- **Boolean: Laws of Complements**
 \[A \land \sim A = 1 \]
 \[A + \sim A \neq 1 \]
 “A is true” or “A is false”

- **Ring: Every element has additive inverse**
 \[A \land \sim A \neq 0 \]
 \[A + \sim A = 0 \]
Boolean Ring

- \(\langle \{0,1\}, ^\wedge, \&, I, 0, 1 \rangle \)
- Identical to integers mod 2
- \(I \) is identity operation: \(I(A) = A \)
 \[A \wedge A = 0 \]

Properties

Property

- **Commutative sum**
 \[A \wedge B = B \wedge A \]
- **Commutative product**
 \[A \& B = B \& A \]
- **Associative sum**
 \[(A \wedge B) \wedge C = A \wedge (B \wedge C) \]
- **Associative product**
 \[(A \& B) \& C = A \& (B \& C) \]
- **Prod. over sum**
 \[A \& (B \wedge C) = (A \& B) \wedge (B \& C) \]
- **0 is sum identity**
 \[A \wedge 0 = A \]
- **1 is prod. identity**
 \[A \& 1 = A \]
- **0 is product annihilator**
 \[A \& 0 = 0 \]
- **Additive inverse**
 \[A \wedge A = 0 \]
Relations Between Operations

DeMorgan’s Laws

- Express & in terms of ∨, and vice-versa
 - \(A \land B = \neg(\neg A \lor \neg B) \)
 - A and B are true if and only if neither A nor B is false
 - \(A \lor B = \neg(\neg A \land \neg B) \)
 - A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or

- \(A \oplus B = (\neg A \land B) \lor (A \land \neg B) \)
 - Exactly one of A and B is true
- \(A \oplus B = (A \lor B) \land \neg(A \land B) \)
 - Either A is true, or B is true, but not both
General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

01101001 & 01010101 = 01000001
01101001 | 01010101 = 01111101
01101001 ^ 01010101 = 00111100
01101001 ~ 01010101 = 10101010

All of the Properties of Boolean Algebra Apply
Representing & Manipulating Sets

Representation
- **Width** w bit vector represents subsets of $\{0, \ldots, w-1\}$
- $a_j = 1$ if $j \in A$
 - 01101001 \{0, 3, 5, 6\}
 - 76543210

Operations
- **&** Intersection
 - 01000001 \{0, 6\}
- **|** Union
 - 01111101 \{0, 2, 3, 4, 5, 6\}
- **^** Symmetric difference
 - 00111100 \{2, 3, 4, 5\}
- **~** Complement
 - 10101010 \{1, 3, 5, 7\}
Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any “integral” data type
 - long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41 --> 0xBE
 ~01000001₂ --> 10111110₂
- ~0x00 --> 0xFF
 ~00000000₂ --> 11111111₂
- 0x69 & 0x55 --> 0x41
 01101001₂ & 01010101₂ --> 01000001₂
- 0x69 | 0x55 --> 0x7D
 01101001₂ | 01010101₂ --> 01111101₂
Contrast: Logic Operations in C

Contrast to Logical Operators

- `&&`, `||`, `!`
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- `!0x41` --> `0x00`
- `!0x00` --> `0x01`
- `!!0x41` --> `0x01`

- `0x69 && 0x55` --> `0x01`
- `0x69 || 0x55` --> `0x01`
- `p && *p` (avoids null pointer access)
Shift Operations

Left Shift: \(x << y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x >> y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0’s on left
- Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse
 \[A ^ A = 0 \]

```
void funny(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```
Main Points

It’s All About Bits & Bytes
- Numbers
- Programs
- Text

Different Machines Follow Different Conventions
- Word size
- Byte ordering
- Representations

Boolean Algebra is Mathematical Basis
- Basic form encodes “false” as 0, “true” as 1
- General form like bit-level operations in C
 - Good for representing & manipulating sets
Reading Byte-Reversed Listings

Disassembly
- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

Deciphering Numbers
- Value: 0x12ab
- Pad to 4 bytes: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00
Examining Data Representations

Code to Print Byte Representation of Data

- Casting pointer to `unsigned char *` creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p	0x%.2x
", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- `%p`: Print pointer
- `%x`: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```plaintext
int a = 15213;
0x11ffffffcb8  0x6d
0x11ffffffcb9  0x3b
0x11ffffffcba  0x00
0x11ffffffcbb  0x00
```