
Bits and Bytes

TopicsTopics
 Why bits?
 Representing information as bits

 Binary/Hexadecimal
 Byte representations

» numbers
» characters and strings
» Instructions

 Bit-level manipulations
 Boolean algebra
 Expressing in C

Systems I

2

Why Donʼt Computers Use Base 10?
Base 10 Number RepresentationBase 10 Number Representation

 Thatʼs why fingers are known as “digits”
 Natural representation for financial transactions

 Floating point number cannot exactly represent $1.20
 Even carries through in scientific notation

 1.5213 X 104

Implementing ElectronicallyImplementing Electronically
 Hard to store

 ENIAC (First electronic computer) used 10 vacuum tubes / digit
 Hard to transmit

 Need high precision to encode 10 signal levels on single wire
 Messy to implement digital logic functions

 Addition, multiplication, etc.

3

Binary Representations
Base 2 Number RepresentationBase 2 Number Representation

 Represent 1521310 as 111011011011012
 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213

Electronic ImplementationElectronic Implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

 Straightforward implementation of arithmetic functions
0.0V
0.5V

2.8V
3.3V

0 1 0

4

Encoding Byte Values
Byte = 8 bitsByte = 8 bits

 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16
 Base 16 number representation
 Use characters ʻ0ʼ to ʻ9ʼ and ʻAʼ to ʻFʼ
 Write FA1D37B16 in C as 0xFA1D37B

» Or 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decimal

Binary

5

Machine Words
Machine Has Machine Has ““Word SizeWord Size””

 Nominal size of integer-valued data
 Including addresses

 Most current machines are 32 bits (4 bytes)
 Limits addresses to 4GB
 Becoming too small for memory-intensive applications

 High-end systems are 64 bits (8 bytes)
 Potentially address ≈ 1.8 X 1019 bytes

 Machines support multiple data formats
 Fractions or multiples of word size
 Always integral number of bytes

6

Word-Oriented Memory
Organization

Addresses Specify ByteAddresses Specify Byte
LocationsLocations
 Address of first byte in

word
 Addresses of successive

words differ by 4 (32-bit) or
8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

7

Data Representations
Sizes of C Objects (in Bytes)Sizes of C Objects (in Bytes)

 C Data Type Typical 32-bit Intel IA32
 int 4 4
 long int 4 4
 char 1 1
 short 2 2
 float 4 4
 double 8 8
 long double 8 10/12
 char * 4 4

» Or any other pointer

8

Byte Ordering
How should bytes within multi-byte word be ordered inHow should bytes within multi-byte word be ordered in

memory?memory?
ConventionsConventions

 Sunʼs, Macʼs are “Big Endian” machines
 Least significant byte has highest address

 Alphas, PCʼs are “Little Endian” machines
 Least significant byte has lowest address

9

Byte Ordering Example
Big Big EndianEndian

 Least significant byte has highest address

Little Little EndianEndian
 Least significant byte has lowest address

ExampleExample
 Variable x has 4-byte representation 0x01234567
 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

10

Representing Integers
intint A = 15213; A = 15213;
intint B = -15213; B = -15213;
long long intint C = 15213; C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

6D
3B
00
00

Linux/Alpha A

3B
6D

00
00

Sun A

93
C4
FF
FF

Linux/Alpha B

C4
93

FF
FF

Sun B

Twoʼs complement representation
(Covered next lecture)

00
00
00
00

6D
3B
00
00

Alpha C

3B
6D

00
00

Sun C

6D
3B
00
00

Linux C

11

Representing Pointers (addresses)
int int B = -15213;B = -15213;
int int *P = &B;*P = &B;

Alpha Address
Hex: 1 F F F F F C A 0

Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000 01
00
00
00

A0
FC
FF
FF

Alpha P

Sun Address
Hex: E F F F F B 2 C
Binary: 1110 1111 1111 1111 1111 1011 0010 1100

Different compilers & machines assign different locations to objects

FB
2C

EF
FF

Sun P

FF
BF

D4
F8

Linux P

Linux Address
Hex: B F F F F 8 D 4
Binary: 1011 1111 1111 1111 1111 1000 1101 0100

12

Representing Floats
Float F = 15213.0;Float F = 15213.0;

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines

00
B4
6D
46

Linux/Alpha F

B4
00

46
6D

Sun F

Can see some relation to integer representation, but not obvious

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

13

char S[6] = "15213";char S[6] = "15213";

Representing Strings
Strings in CStrings in C

 Represented by array of characters
 Each character encoded in ASCII format

 Standard 7-bit encoding of character set
 Other encodings exist, but uncommon
 Character “0” has code 0x30

» Digit i has code 0x30+i
 String should be null-terminated

 Final character = 0

CompatibilityCompatibility
 Byte ordering not an issue

 Data are single byte quantities
 Text files generally platform independent

 Except for different conventions of line termination character(s)!

Linux/Alpha S Sun S

32
31

31
35

33
00

32
31

31
35

33
00

14

Machine-Level Code Representation
Encode Program as Sequence of InstructionsEncode Program as Sequence of Instructions

 Each simple operation
 Arithmetic operation
 Read or write memory
 Conditional branch

 Instructions encoded as bytes
 Alphaʼs, Sunʼs, Macʼs use 4 byte instructions

» Reduced Instruction Set Computer (RISC)
 PCʼs use variable length instructions

» Complex Instruction Set Computer (CISC)
 Different instruction types and encodings for different

machines
 Most code not binary compatible

Programs are Byte Sequences Too!Programs are Byte Sequences Too!

15

Representing Instructions
intint sum(sum(intint x, x, intint y) y)
{{
 return x+y; return x+y;
}}

Different machines use totally different instructions and encodings

00
00
30
42

Alpha sum

01
80
FA
6B

E0
08

81
C3

Sun sum

90
02
00
09

 For this example, Alpha &
Sun use two 4-byte
instructions
 Use differing numbers of

instructions in other cases
 PC uses 7 instructions with

lengths 1, 2, and 3 bytes
 Same for NT and for Linux
 NT / Linux not fully binary

compatible

E5
8B

55
89

PC sum

45
0C
03
45
08
89
EC
5D
C3

16

Boolean Algebra
Developed by George Developed by George BooleBoole in 19th Century in 19th Century

 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

AndAnd
 A&B = 1 when both A=1 and

B=1
& 0 1

0 0 0

1 0 1

~

0 1

1 0

NotNot
 ~A = 1 when A=0

OrOr
 A|B = 1 when either A=1 or

B=1
| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

Exclusive-Or (Exclusive-Or (XorXor))
 A^B = 1 when either A=1 or

B=1, but not both

17

A

~A

~B

B

Connection when

 A&~B | ~A&B

Application of Boolean Algebra
Applied to Digital Systems by Claude ShannonApplied to Digital Systems by Claude Shannon

 1937 MIT Masterʼs Thesis
 Reason about networks of relay switches

 Encode closed switch as 1, open switch as 0
A&~B

~A&B = A^B

18

Integer Algebra
Integer ArithmeticInteger Arithmetic

 〈Z, +, *, –, 0, 1〉 forms a “ring”
 Addition is “sum” operation
 Multiplication is “product” operation
 – is additive inverse
 0 is identity for sum
 1 is identity for product

19

Boolean Algebra
Boolean AlgebraBoolean Algebra

 〈{0,1}, |, &, ~, 0, 1〉 forms a “Boolean algebra”
 Or is “sum” operation
 And is “product” operation
 ~ is “complement” operation (not additive inverse)
 0 is identity for sum
 1 is identity for product

20

 Commutativity
A | B = B | A A + B = B + A
A & B = B & A A * B = B * A

 Associativity
(A | B) | C = A | (B | C) (A + B) + C = A + (B + C)
(A & B) & C = A & (B & C) (A * B) * C = A * (B * C)

 Product distributes over sum
A & (B | C) = (A & B) | (A & C) A * (B + C) = A * B + B * C

 Sum and product identities
A | 0 = A A + 0 = A
A & 1 = A A * 1 = A

 Zero is product annihilator
A & 0 = 0 A * 0 = 0

 Cancellation of negation
~ (~ A) = A – (– A) = A

Boolean Algebra Boolean Algebra ≈≈ Integer RingInteger Ring

21

 Boolean: Sum distributes over product
A | (B & C) = (A | B) & (A | C) A + (B * C) ≠ (A + B) * (B + C)

 Boolean: Idempotency
A | A = A A + A ≠ A

“A is true” or “A is true” = “A is true”
A & A = A A * A ≠ A

 Boolean: Absorption
A | (A & B) = A A + (A * B) ≠ A

“A is true” or “A is true and B is true” = “A is true”
A & (A | B) = A A * (A + B) ≠ A

 Boolean: Laws of Complements
A | ~A = 1 A + –A ≠ 1

“A is true” or “A is false”
 Ring: Every element has additive inverse

A | ~A ≠ 0 A + –A = 0

Boolean Algebra Boolean Algebra ≠≠ Integer RingInteger Ring

22

Properties of & and ^Boolean RingBoolean Ring
 〈{0,1}, ^, &, Ι, 0, 1〉
 Identical to integers mod 2
 Ι is identity operation: Ι (A) = A

A ^ A = 0

PropertyProperty Boolean RingBoolean Ring
 Commutative sum A ^ B = B ^ A
 Commutative product A & B = B & A
 Associative sum (A ^ B) ^ C = A ^ (B ^ C)
 Associative product (A & B) & C = A & (B & C)
 Prod. over sum A & (B ^ C) = (A & B) ^ (B & C)
 0 is sum identity A ^ 0 = A
 1 is prod. identity A & 1 = A
 0 is product annihilator A & 0 = 0
 Additive inverse A ^ A = 0

23

Relations Between Operations
DeMorganDeMorganʼ̓ss Laws Laws

 Express & in terms of |, and vice-versa
 A & B = ~(~A | ~B)

» A and B are true if and only if neither A nor B is false
 A | B = ~(~A & ~B)

» A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive OrExclusive-Or using Inclusive Or
 A ^ B = (~A & B) | (A & ~B)

» Exactly one of A and B is true
 A ^ B = (A | B) & ~(A & B)

» Either A is true, or B is true, but not both

24

General Boolean Algebras
Operate on Bit VectorsOperate on Bit Vectors

 Operations applied bitwise

All of the Properties of Boolean Algebra ApplyAll of the Properties of Boolean Algebra Apply

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

25

Representing & Manipulating Sets
RepresentationRepresentation

 Width w bit vector represents subsets of {0, …, w–1}
 aj = 1 if j ∈ A

01101001 { 0, 3, 5, 6 }
76543210

01010101 { 0, 2, 4, 6 }
76543210

OperationsOperations
 & Intersection 01000001 { 0, 6 }
 | Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~ Complement 10101010 { 1, 3, 5, 7 }

26

Bit-Level Operations in C
Operations &, |, ~, ^ Available in COperations &, |, ~, ^ Available in C

 Apply to any “integral” data type
 long, int, short, char

 View arguments as bit vectors
 Arguments applied bit-wise

Examples (Char data type)Examples (Char data type)
 ~0x41 --> 0xBE

~010000012 --> 101111102
 ~0x00 --> 0xFF

~000000002 --> 111111112
 0x69 & 0x55 --> 0x41

011010012 & 010101012 --> 010000012
 0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

27

Contrast: Logic Operations in C
Contrast to Logical OperatorsContrast to Logical Operators

 &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

Examples (char data type)Examples (char data type)
 !0x41 --> 0x00

 !0x00 --> 0x01

 !!0x41 --> 0x01

 0x69 && 0x55 --> 0x01

 0x69 || 0x55 --> 0x01

 p && *p (avoids null pointer access)

28

Shift Operations
Left Shift: Left Shift: x << yx << y

 Shift bit-vector x left y positions
 Throw away extra bits on left
 Fill with 0ʼs on right

Right Shift: Right Shift: x >> yx >> y
 Shift bit-vector x right y

positions
 Throw away extra bits on right

 Logical shift
 Fill with 0ʼs on left

 Arithmetic shift
 Replicate most significant bit on

right
 Useful with twoʼs complement

integer representation

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

29

Cool Stuff with Xor

void funny(void funny(intint *x, *x, intint *y) *y)
{{
 *x = *x ^ *y; /* #1 */ *x = *x ^ *y; /* #1 */
 *y = *x ^ *y; /* #2 */ *y = *x ^ *y; /* #2 */
 *x = *x ^ *y; /* #3 */ *x = *x ^ *y; /* #3 */
}}

 Bitwise Xor is form
of addition

 With extra property
that every value is
its own additive
inverse

 A ^ A = 0

BABegin
BA^B1

(A^B)^B = AA^B2
A(A^B)^A = B3
ABEnd

*y*x

30

Main Points
ItItʼ̓s All About Bits & Bytess All About Bits & Bytes

 Numbers
 Programs
 Text

Different Machines Follow Different ConventionsDifferent Machines Follow Different Conventions
 Word size
 Byte ordering
 Representations

Boolean Algebra is Mathematical BasisBoolean Algebra is Mathematical Basis
 Basic form encodes “false” as 0, “true” as 1
 General form like bit-level operations in C

 Good for representing & manipulating sets

31

Reading Byte-Reversed Listings
DisassemblyDisassembly

 Text representation of binary machine code
 Generated by program that reads the machine code

Example FragmentExample Fragment
 Address Instruction Code Assembly Rendition
 8048365: 5b pop %ebx
 8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
 804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Deciphering NumbersDeciphering Numbers
 Value: 0x12ab

 Pad to 4 bytes: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00

32

Examining Data Representations
Code to Print Byte Representation of DataCode to Print Byte Representation of Data

 Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
 int i;
 for (i = 0; i < len; i++)
 printf("0x%p\t0x%.2x\n",
 start+i, start[i]);
 printf("\n");
}

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

33

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux):
int a = 15213;

0x11ffffcb8 0x6d

0x11ffffcb9 0x3b

0x11ffffcba 0x00

0x11ffffcbb 0x00

