
Code Optimization II:
Machine Independent Optimizations

TopicsTopics
 Machine-Independent Optimizations

 Code motion
 Reduction in strength
 Common subexpression sharing

 Tuning
 Identifying performance bottlenecks

Systems I

2

Vector ADT

ProceduresProcedures
vec_ptr new_vec(int len)

 Create vector of specified length
int get_vec_element(vec_ptr v, int index, int *dest)

 Retrieve vector element, store at *dest
 Return 0 if out of bounds, 1 if successful

int *get_vec_start(vec_ptr v)
 Return pointer to start of vector data

 Similar to array implementations in Pascal, ML, Java
 E.g., always do bounds checking

length
data • • •

0 1 2 length–1

3

Optimization Example

ProcedureProcedure
 Compute sum of all elements of integer vector
 Store result at destination location
 Vector data structure and operations defined via abstract data type

Pentium II/III Performance: Clock Cycles / ElementPentium II/III Performance: Clock Cycles / Element
 42.06 (Compiled -g) 31.25 (Compiled -O2)

void combine1(vec_ptr v, int *dest)
{
 int i;
 *dest = 0;
 for (i = 0; i < vec_length(v); i++) {
 int val;
 get_vec_element(v, i, &val);
 *dest += val;
 }
}

4

Reduction in Strength

OptimizationOptimization
 Avoid procedure call to retrieve each vector element

Get pointer to start of array before loop
Within loop just do pointer reference
Not as clean in terms of data abstraction

 CPE: 6.00 (Compiled -O2)
Procedure calls are expensive!
Bounds checking is expensive

void combine2(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 *dest = 0;
 for (i = 0; i < length; i++) {
 *dest += data[i];
}

5

Eliminate Unneeded Memory Refs

OptimizationOptimization
 Donʼt need to store in destination until end
 Local variable sum held in register
 Avoids 1 memory read, 1 memory write per cycle
 CPE: 2.00 (Compiled -O2)

Memory references are expensive!

void combine3(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 int sum = 0;
 for (i = 0; i < length; i++)
 sum += data[i];
 *dest = sum;
}

6

Detecting Unneeded Memory Refs.

PerformancePerformance
 Combine2

5 instructions in 6 clock cycles
 addl must read and write memory

 Combine3
4 instructions in 2 clock cycles

.L18:
movl (%ecx,%edx,4),%eax
addl %eax,(%edi)
incl %edx
cmpl %esi,%edx
jl .L18

Combine2

.L24:
addl (%eax,%edx,4),%ecx

incl %edx
cmpl %esi,%edx
jl .L24

Combine3

7

Optimization Blocker: Memory Aliasing
AliasingAliasing

 Two different memory references specify single location

ExampleExample
 v: [3, 2, 17]

 combine2(v, get_vec_start(v)+2) --> ?

 combine3(v, get_vec_start(v)+2) --> ?

ObservationsObservations
 Easy to have happen in C

Since allowed to do address arithmetic
Direct access to storage structures

 Get in habit of introducing local variables
Accumulating within loops
Your way of telling compiler not to check for aliasing

8

Previous Best Combining Code

TaskTask
 Compute sum of all elements in vector
 Vector represented by C-style abstract data type
 Achieved CPE of 2.00

 Cycles per element

void combine4(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 int sum = 0;
 for (i = 0; i < length; i++)
 sum += data[i];
 *dest = sum;
}

9

General Forms of Combining

Data TypesData Types
 Use different declarations

for data_t
 int

 float

 double

void abstract_combine4(vec_ptr v, data_t *dest)
{
 int i;
 int length = vec_length(v);
 data_t *data = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP data[i];
 *dest = t;
}

OperationsOperations
 Use different definitions

of OP and IDENT
 + / 0
 * / 1

10

Machine Independent Opt. Results
OptimizationsOptimizations

 Reduce function calls and memory references within loop

Performance AnomalyPerformance Anomaly
 Computing FP product of all elements exceptionally slow.
 Very large speedup when accumulate in temporary
 Caused by quirk of IA32 floating point

 Memory uses 64-bit format, register use 80
 Benchmark data caused overflow of 64 bits, but not 80

Integer Floating Point Method
+ * + *

Abstract -g 42.06 41.86 41.44 160.00

Abstract -O2 31.25 33.25 31.25 143.00

Move vec_length 20.66 21.25 21.15 135.00

data access 6.00 9.00 8.00 117.00

Accum. in temp 2.00 4.00 3.00 5.00

11

Pointer Code

OptimizationOptimization
 Use pointers rather than array references
 CPE: 3.00 (Compiled -O2)

Oops! Weʼre not making progress here!
Warning: Some compilers do better job optimizing array code

void combine4p(vec_ptr v, int *dest)
{
 int length = vec_length(v);
 int *data = get_vec_start(v);
 int *dend = data+length;
 int sum = 0;
 while (data < dend) {
 sum += *data;
 data++;
 }
 *dest = sum;
}

12

Pointer vs. Array Code Inner Loops
Array CodeArray Code

Pointer CodePointer Code

PerformancePerformance
 Array Code: 4 instructions in 2 clock cycles
 Pointer Code: Almost same 4 instructions in 3 clock cycles

.L24: # Loop:
addl (%eax,%edx,4),%ecx # sum += data[i]
incl %edx # i++
cmpl %esi,%edx # i:length
jl .L24 # if < goto Loop

.L30: # Loop:
addl (%eax),%ecx # sum += *data
addl $4,%eax # data ++
cmpl %edx,%eax # data:dend
jb .L30 # if < goto Loop

13

Machine-Independent Opt. Summary
Code MotionCode Motion

 Compilers are good at this for simple loop/array structures
 Donʼt do well in presence of procedure calls and memory aliasing

Reduction in StrengthReduction in Strength
 Shift, add instead of multiply or divide

 compilers are (generally) good at this
 Exact trade-offs machine-dependent

 Keep data in registers rather than memory
 compilers are not good at this, since concerned with aliasing

Share Common Share Common SubexpressionsSubexpressions
 compilers have limited algebraic reasoning capabilities

14

Important Tools
MeasurementMeasurement

 Accurately compute time taken by code
Most modern machines have built in cycle counters
Using them to get reliable measurements is tricky

 Profile procedure calling frequencies
Unix tool gprof

ObservationObservation
 Generating assembly code

Lets you see what optimizations compiler can make
Understand capabilities/limitations of particular compiler

15

Code Profiling Example
TaskTask

 Count word frequencies in text document
 Produce sorted list of words from most frequent to least

StepsSteps
 Convert strings to lowercase
 Apply hash function
 Read words and insert into hash table

 Mostly list operations
 Maintain counter for each unique word

 Sort results

Data SetData Set
 Collected works of Shakespeare
 946,596 total words, 26,596 unique
 Initial implementation: 9.2 seconds

thatthat11,51911,519
inin11,72211,722
mymy12,93612,936
youyou1401014010
aa15,37015,370
ofof18,51418,514
toto20,95720,957
II21,02921,029
andand27,52927,529
thethe29,80129,801

Shakespeareʼs
most frequent words

16

Code Profiling
Augment Executable Program with Timing FunctionsAugment Executable Program with Timing Functions

 Computes (approximate) amount of time spent in each
function

 Time computation method
 Periodically (~ every 10ms) interrupt program
 Determine what function is currently executing
 Increment its timer by interval (e.g., 10ms)

 Also maintains counter for each function indicating number
of times called

UsingUsing
gcc –O2 –pg prog.c –o prog
./prog

 Executes in normal fashion, but also generates file gmon.out
gprof prog

 Generates profile information based on gmon.out

17

Profiling Results

Call StatisticsCall Statistics
 Number of calls and cumulative time for each function

Performance LimiterPerformance Limiter
 Using inefficient sorting algorithm
 Single call uses 87% of CPU time

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 86.60 8.21 8.21 1 8210.00 8210.00 sort_words
 5.80 8.76 0.55 946596 0.00 0.00 lower1
 4.75 9.21 0.45 946596 0.00 0.00 find_ele_rec
 1.27 9.33 0.12 946596 0.00 0.00 h_add

18

Code Optimizations

 First step: Use more efficient sorting function
 Library function qsort

0

1

2

3

4

5

6

7

8

9

10

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

C
P

U
 S

e
c

s
.

Rest

Hash

Lower

List

Sort

19

Further Optimizations

 Iter first: Use iterative function to insert elements into linked
list
 Causes code to slow down

 Iter last: Iterative function, places new entry at end of list
 Tend to place most common words at front of list

 Big table: Increase number of hash buckets
 Better hash: Use more sophisticated hash function
 Linear lower: Move strlen out of loop

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

C
P

U
 S

e
c

s
.

Rest

Hash

Lower

List

Sort

20

Profiling Observations
BenefitsBenefits

 Helps identify performance bottlenecks
 Especially useful when have complex system with many

components

LimitationsLimitations
 Only shows performance for data tested
 E.g., linear lower did not show big gain, since words are

short
 Quadratic inefficiency could remain lurking in code

 Timing mechanism fairly crude
 Only works for programs that run for > 3 seconds

21

Role of Programmer
How should I write my programs, given that I have a good, optimizing

compiler?

DonDonʼ̓t: Smash Code into Obliviont: Smash Code into Oblivion
 Hard to read, maintain, & assure correctness

Do:Do:
 Select best algorithm
 Write code thatʼs readable & maintainable

 Procedures, recursion, without built-in constant limits
 Even though these factors can slow down code

 Eliminate optimization blockers
 Allows compiler to do its job

Focus on Inner LoopsFocus on Inner Loops
 Do detailed optimizations where code will be executed repeatedly
 Will get most performance gain here

22

Summary
TodayToday

 Optimization blocker: procedure calls
 Optimization blocker: memory aliasing
 Tools (profiling) for understanding performance

Next timeNext time
 Memory system optimization

