
Logic Design I

TopicsTopics
 Digital logic
 Logic gates
 Simple combinational logic circuits

Systems I

2

A Simple C statement…..
C =C = A + B;A + B;

WhatWhat pieces of hardware do you think you might need?pieces of hardware do you think you might need?
 Storage - for values A, B, C
 Computation logic - to compute +
 A way to tell the computer to retrieve the values from

storage, add them together, and put the result back in
storage
 This could be accomplished with a single command

(instruction) or with multiple of them.

3

Overview of Logic Design
Fundamental Hardware RequirementsFundamental Hardware Requirements

 Communication
 How to get values from one place to another

 Computation
 Storage

Bits are Our FriendsBits are Our Friends
 Everything expressed in terms of values 0 and 1
 Communication

 Low or high voltage on wire
 Computation

 Compute Boolean functions
 Storage

 Store bits of information

4

Digital Signals

 Use voltage thresholds to extract discrete values from
continuous signal

 Simplest version: 1-bit signal
 Either high range (1) or low range (0)
 With guard range between them

 Not strongly affected by noise or low quality circuit elements
 Can make circuits simple, small, and fast

Voltage

Time

0 1 0

5

Computing with Logic Gates

 Logic gates constructed from transistors
 Outputs are Boolean functions of inputs
 Respond continuously to changes in inputs

 With some, small delay

a

b
out

a

b
out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay Falling Delay

6

Truth Tables

outoutbbaa

111111

000011

001100

000000

outoutbbaa

111111

110011

111100

000000

outoutaa

0011

1100

a

b
out

a

b
out a out

out = a && b out = a || b out = !a

And Or Not

7

aa outoutccbbWhat about this?

a
b outc

out = !((a && b) || c)

out = ~(a*b + c)

11

11

11

11

00

00

00

00

aa

1111

0011

1100

0000

outoutccbb

1111

0011

1100

0000

11

11

11

11

00

00

00

00

aa

001111

000011

001100

110000

outoutccbb

001111

110011

001100

110000

8

Combinational Circuits

Acyclic Network of Logic GatesAcyclic Network of Logic Gates
 Continously responds to changes on primary inputs
 Primary outputs become (after some delay) Boolean

functions of primary inputs

Acyclic Network

Primary
Inputs

Primary
Outputs

9

Bit Equality

 Generate 1 if a and b are equal

Hardware Control Language (HCL)Hardware Control Language (HCL)
 Very simple hardware description language

 Boolean operations have syntax similar to C logical operations
 Weʼll use it to describe control logic for processors

Bit equal
a

b

eq
bool eq = (a&&b)||(!a&&!b)

HCL Expression

10

Hardware Control Language
 Very simple hardware description language
 Can only express limited aspects of hardware operation

 Parts we want to explore and modify

Data TypesData Types
 bool: Boolean

 a, b, c, …
 int: words

 A, B, C, …
 Does not specify word size---bytes, 32-bit words, …

StatementsStatements
 bool a = bool-expr ;
 int A = int-expr ;

11

HCL Operations
 Classify by type of value returned

Boolean ExpressionsBoolean Expressions
 Logic Operations

 a && b, a || b, !a
 Word Comparisons

 A == B, A != B, A < B, A <= B, A >= B, A > B
 Set Membership

 A in { B, C, D }
» Same as A == B || A == C || A == D

Word ExpressionsWord Expressions
 Case expressions

 [a : A; b : B; c : C]
 Evaluate test expressions a, b, c, … in sequence
 Return word expression A, B, C, … for first successful test

12

Word Equality

 32-bit word size
 HCL representation

 Equality operation
 Generates Boolean value

b31
Bit equal

a31

eq31

b30
Bit equal

a30

eq30

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

Word-Level Representation

bool Eq = (A == B)

HCL Representation

13

Bit-Level Multiplexor

 Control signal s
 Data signals a and b
 Output a when s=1, b when s=0

Bit MUX

b

s

a

out

bool out = (s&&a)||(!s&&b)

HCL Expression

14

Word Multiplexor

 Select input word A or B
depending on control signal s

 HCL representation
 Case expression
 Series of test : value pairs
 Output value for first successful

test

Word-Level Representation

HCL Representation

b31

s

a31

out31

b30

a30

out30

b0

a0

out0

int Out = [
 s : A;
 1 : B;
];

s

B

A
OutMUX

15

HCL Word-Level Examples

 Find minimum of three
input words

 HCL case expression
 Final case guarantees

match
 How would you build

this?

A
Min3MIN3B

C
int Min3 = [
 A < B && A < C : A;
 B < A && B < C : B;
 1 : C;
];

D0

D3

Out4

s0
s1

MUX4
D2
D1

 Select one of 4 inputs
based on two control
bits

 HCL case expression
 Simplify tests by

assuming sequential
matching

int Out4 = [
 !s1&&!s0: D0;
 !s1 : D1;
 !s0 : D2;
 1 : D3;
];

Minimum of 3 Words

4-Way Multiplexor

16

Simple computations are just
combinational logic circuits

Sum = A*B + A*Cin + B*Cin

Cout = A^B^Cin
 = A*B*Cin + A*B*Cin + A*B*Cin + A*B*Cin

+

A B

CinCout

Sum

One Bit Adder

0Sum4 +

A0 B0

Sum0

+

A1 B1

Sum1

+

A2 B2

Sum2

+

A3 B3

Sum3

Four Bit Adder

How do you do subtract?

How do you do multiply?

17

OF
ZF
SF

OF
ZF
SF

OF
ZF
SF

OF
ZF
SF

Arithmetic Logic Unit

 Combinational logic
 Continuously responding to inputs

 Control signal selects function computed
 Corresponding to 4 arithmetic/logical operations in Y86

 Also computes values for condition codes
 OF = overflow flag, ZF = Zero Flag, SF = Sign Flag

A
L
U

Y

X

X + Y

0

A
L
U

Y

X

X - Y

1

A
L
U

Y

X

X & Y

2

A
L
U

Y

X

X ^ Y

3

A

B

A

B

A

B

A

B

18

OF
ZF
SF

OF
ZF
SF

OF
ZF
SF

OF
ZF
SF

Arithmetic Logic Unit

A
L
U

Y

X

X + Y

<s1,s0> = 00

A
L
U

Y

X

X - Y
A
L
U

Y

X

X & Y
A
L
U

Y

X

X ^ Y

A

B

A

B

A

B

A

B

int Out = [
 !s1&&!s0: X+Y;
 !s1&&s0: Y-Y;
 s1&&!s0: X&Y;
 1 : X^Y;
];

<s1,s0> = 01 <s1,s0> = 10 <s1,s0> = 11

19

Summary
TodayToday

 Basic logic elements
 Combinational logic circuits

 Truth tables, gates
 Aggregating logic elements

 Multiplexors, ALUs, etc.

Next TimeNext Time
 Circuits that remember

