
Instruction Set Architecture - I

TopicsTopics
 Introduction to instruction sets
 Y86 as a subset of the X86
 Basic elements to be implemented by

hardware

Systems I

2

Instruction Set Architecture
Assembly Language ViewAssembly Language View

 Processor state
 Registers, memory, …

 Instructions
 addl, movl, leal, …
 How instructions are encoded

as bytes

Layer of AbstractionLayer of Abstraction
 Above: how to program machine

 Processor executes instructions
in a sequence

 Below: what needs to be built
 Use variety of tricks to make it

run fast
 E.g., execute multiple

instructions simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

3

%eax
%ecx
%edx
%ebx

%esi
%edi
%esp
%ebp

Y86 Processor State

 Program Registers
 Same 8 as with IA32. Each 32 bits

 Condition Codes
 Single-bit flags set by arithmetic or logical instructions

» OF: Overflow ZF: Zero SF:Negative
 Program Counter

 Indicates address of instruction
 Memory

 Byte-addressable storage array
 Words stored in little-endian byte order

Program
registers Condition

codes

PC

Memory

OF ZF SF

4

Y86 Instructions
FormatFormat

 1--6 bytes of information read from memory
 Can determine instruction length from first byte
 Not as many instruction types, and simpler encoding than with

IA32
 Each accesses and modifies some part(s) of the program

state

5

Encoding Registers
Each register has 4-bit IDEach register has 4-bit ID

 Same encoding as in IA32

Register ID 8 indicates Register ID 8 indicates ““no registerno register””
 Will use this in our hardware design in multiple places

%eax
%ecx
%edx
%ebx

%esi
%edi
%esp
%ebp

0
1
2
3

6
7
4
5

6

Instruction Example
Addition InstructionAddition Instruction

 Add value in register rA to that in register rB
 Store result in register rB
 Note that Y86 only allows addition to be applied to register data

 Set condition codes based on result
 e.g., addl %eax,%esi Encoding: 60 06
 Two-byte encoding

 First indicates instruction type
 Second gives source and destination registers

addl rA, rB 6 0 rA rB

Encoded Representation

Generic Form

7

Arithmetic and Logical Operations
 Refer to generically as

“OPl”
 Encodings differ only by

“function code”
 Low-order 4 bytes in first

instruction word
 Set condition codes as

side effect

addl rA, rB 6 0 rA rB

subl rA, rB 6 1 rA rB

andl rA, rB 6 2 rA rB

xorl rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code

8

Move Operations

 Like the IA32 movl instruction
 Simpler format for memory addresses
 Give different names to keep them distinct

rrmovl rA, rB 2 0 rA rB Register --> Register

Immediate --> Register
irmovl V, rB 3 0 8 rB V

Register --> Memory
rmmovl rA, D(rB) 4 0 rA rB D

Memory --> Register
mrmovl D(rB), rA 5 0 rA rB D

9

Move Instruction Examples

irmovl $0xabcd, %edx movl $0xabcd, %edx 30 82 cd ab 00 00

IA32 Y86 Encoding

rrmovl %esp, %ebx movl %esp, %ebx 20 43

mrmovl -12(%ebp),%ecxmovl -12(%ebp),%ecx 50 15 f4 ff ff ff

rmmovl %esi,0x41c(%esp)movl %esi,0x41c(%esp)

—movl $0xabcd, (%eax)

—movl %eax, 12(%eax,%edx)

—movl (%ebp,%eax,4),%ecx

40 64 1c 04 00 00

10

Jump Instructions
 Refer to generically as

“jXX”
 Encodings differ only by

“function code”
 Based on values of

condition codes
 Same as IA32 counterparts
 Encode full destination

address
 Unlike PC-relative

addressing seen in IA32

jmp Dest 7 0

Jump Unconditionally

Dest

jle Dest 7 1

Jump When Less or Equal

Dest

jl Dest 7 2

Jump When Less

Dest

je Dest 7 3

Jump When Equal

Dest

jne Dest 7 4

Jump When Not Equal

Dest

jge Dest 7 5

Jump When Greater or Equal

Dest

jg Dest 7 6

Jump When Greater

Dest

11

Y86 Program Stack
 Region of memory holding

program data
 Used in Y86 (and IA32) for

supporting procedure calls
 Stack top indicated by %esp

 Address of top stack element
 Stack grows toward lower

addresses
 Top element is at highest

address in the stack
 When pushing, must first

decrement stack pointer
 When popping, increment stack

pointer
%esp

•

•

•

Increasing
Addresses

Stack “Top”

Stack
“Bottom”

x00000000

xffffffff

12

Stack Operations

 Decrement %esp by 4
 Store word from rA to memory at %esp
 Like IA32

 Read word from memory at %esp
 Save in rA
 Increment %esp by 4
 Like IA32

pushl rA a 0 rA 8

popl rA b 0 rA 8

13

Subroutine Call and Return

 Push address of next instruction onto stack
 Start executing instructions at Dest
 Like IA32

 Pop value from stack
 Use as address for next instruction
 Like IA32

call Dest 8 0 Dest

ret 9 0

14

Miscellaneous Instructions

 Donʼt do anything

 Stop executing instructions
 IA32 has comparable instruction, but canʼt execute it in

user mode
 We will use it to stop the simulator

nop 0 0

halt 1 0

15

Writing Y86 Code
Try to Use C Compiler as Much as PossibleTry to Use C Compiler as Much as Possible

 Write code in C
 Compile for IA32 with gcc -S
 Transliterate into Y86

Coding ExampleCoding Example
 Find number of elements in null-terminated list

int len1(int a[]);

5043

6125

7395

0

a

⇒ 3

16

Y86 Code Generation Example
First TryFirst Try

 Write typical array code

 Compile with gcc -O2 -S

ProblemProblem
 Hard to do array indexing on

Y86
 Since donʼt have scaled

addressing modes/* Find number of elements in
 null-terminated list */
int len1(int a[])
{
 int len;
 for (len = 0; a[len]; len++)

;
 return len;
}

L18:
incl %eax
cmpl $0,(%edx,%eax,4)
jne L18

17

Y86 Code Generation Example #2
Second TrySecond Try

 Write with pointer code

 Compile with gcc -O2 -S

ResultResult
 Donʼt need to do indexed

addressing

/* Find number of elements in
 null-terminated list */
int len2(int a[])
{
 int len = 0;
 while (*a++)

len++;
 return len;
}

L24:
movl (%edx),%eax
incl %ecx

L26:
addl $4,%edx
testl %eax,%eax
jne L24

18

Y86 Code Generation Example #3
IA32 CodeIA32 Code

 Setup
Y86 CodeY86 Code

 Setup

len2:
pushl %ebp
xorl %ecx,%ecx
movl %esp,%ebp
movl 8(%ebp),%edx
movl (%edx),%eax
jmp L26

len2:
pushl %ebp # Save %ebp
xorl %ecx,%ecx # len = 0
rrmovl %esp,%ebp # Set frame
mrmovl 8(%ebp),%edx# Get a
mrmovl (%edx),%eax # Get *a
jmp L26 # Goto entry

19

Y86 Code Generation Example #4
IA32 CodeIA32 Code

 Loop + Finish
Y86 CodeY86 Code

 Loop + Finish
L24:

movl (%edx),%eax
incl %ecx

L26:
addl $4,%edx

testl %eax,%eax
jne L24
movl %ebp,%esp
movl %ecx,%eax
popl %ebp
ret

L24:
mrmovl (%edx),%eax # Get *a
irmovl $1,%esi
addl %esi,%ecx # len++

L26: # Entry:
irmovl $4,%esi
addl %esi,%edx # a++
andl %eax,%eax # *a == 0?
jne L24 # No--Loop
rrmovl %ebp,%esp # Pop
rrmovl %ecx,%eax # Rtn len
popl %ebp
ret

20

Y86 Program Structure
 Program starts at

address 0
 Must set up stack

 Make sure donʼt
overwrite code!

 Must initialize data
 Can use symbolic

names

irmovl Stack,%esp # Set up stack
rrmovl %esp,%ebp # Set up frame
irmovl List,%edx
pushl %edx # Push argument
call len2 # Call Function
halt # Halt

.align 4
List: # List of elements

.long 5043

.long 6125

.long 7395

.long 0

Function
len2:

. . .

Allocate space for stack
.pos 0x100
Stack:

21

Assembling Y86 Program

 Generates “object code” file eg.yo
 Actually looks like disassembler output

unix> yas eg.ys

 0x000: 308400010000 | irmovl Stack,%esp # Set up stack
 0x006: 2045 | rrmovl %esp,%ebp # Set up frame
 0x008: 308218000000 | irmovl List,%edx
 0x00e: a028 | pushl %edx # Push argument
 0x010: 8028000000 | call len2 # Call Function
 0x015: 10 | halt # Halt
 0x018: | .align 4
 0x018: | List: # List of elements
 0x018: b3130000 | .long 5043
 0x01c: ed170000 | .long 6125
 0x020: e31c0000 | .long 7395
 0x024: 00000000 | .long 0

22

Simulating Y86 Program

 Instruction set simulator
 Computes effect of each instruction on processor state
 Prints changes in state from original

unix> yis eg.yo

Stopped in 41 steps at PC = 0x16. Exception 'HLT', CC Z=1 S=0 O=0
Changes to registers:
%eax: 0x00000000 0x00000003
%ecx: 0x00000000 0x00000003
%edx: 0x00000000 0x00000028
%esp: 0x00000000 0x000000fc
%ebp: 0x00000000 0x00000100
%esi: 0x00000000 0x00000004

Changes to memory:
0x00f4: 0x00000000 0x00000100
0x00f8: 0x00000000 0x00000015
0x00fc: 0x00000000 0x00000018

23

Summary
Y86 Instruction Set ArchitectureY86 Instruction Set Architecture

 Similar state and instructions as IA32
 Simpler encodings
 Somewhere between CISC and RISC

How Important is ISA Design?How Important is ISA Design?
 Less now than before

 With enough hardware, can make almost anything go fast
 Intel is moving away from IA32

 Does not allow enough parallel execution
 Introduced IA64

» 64-bit word sizes (overcome address space limitations)
» Radically different style of instruction set with explicit parallelism
» Requires sophisticated compilers

24

CISC Instruction Sets
 Complex Instruction Set Computer
 Dominant style through mid-80ʼs

Stack-oriented instruction setStack-oriented instruction set
 Use stack to pass arguments, save program counter
 Explicit push and pop instructions

Arithmetic instructions can access memoryArithmetic instructions can access memory
 addl %eax, 12(%ebx,%ecx,4)

 requires memory read and write
 Complex address calculation

Condition codesCondition codes
 Set as side effect of arithmetic and logical instructions

PhilosophyPhilosophy
 Add instructions to perform “typical” programming tasks

25

RISC Instruction Sets
 Reduced Instruction Set Computer
 Internal project at IBM, later popularized by Hennessy

(Stanford) and Patterson (Berkeley)

Fewer, simpler instructionsFewer, simpler instructions
 Might take more to get given task done
 Can execute them with small and fast hardware

Register-oriented instruction setRegister-oriented instruction set
 Many more (typically 32) registers
 Use for arguments, return pointer, temporaries

Only load and store instructions can access memoryOnly load and store instructions can access memory
 Similar to Y86 mrmovl and rmmovl

No Condition codesNo Condition codes
 Test instructions return 0/1 in register

26

MIPS Registers
$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

$11

$12

$13

$14

$15

$0

$at

$v0

$v1

$a0

$a1

$a2

$a3

$t0

$t1

$t2

$t3

$t4

$t5

$t6

$t7

Constant 0

Reserved Temp.

Return Values

Procedure arguments

Caller Save
Temporaries:
May be overwritten by
called procedures

$16

$17

$18

$19

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$30

$31

$s0

$s1

$s2

$s3

$s4

$s5

$s6

$s7

$t8

$t9

$k0

$k1

$gp

$sp

$s8

$ra

Reserved for
Operating Sys

Caller Save Temp

Global Pointer

Callee Save
Temporaries:
May not be
overwritten by
called procedures

Stack Pointer

Callee Save Temp

Return Address

27

MIPS Instruction Examples

Op Ra Rb Offset

Op Ra Rb Rd Fn00000
R-R

Op Ra Rb Immediate
R-I

Load/Store

addu $3,$2,$1 # Register add: $3 = $2+$1

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # Shift left: $3 = $2 << 2

lw $3,16($2) # Load Word: $3 = M[$2+16]

sw $3,16($2) # Store Word: M[$2+16] = $3

Op Ra Rb Offset
Branch

beq $3,$2,dest # Branch when $3 = $2

28

CISC vs. RISC
Original DebateOriginal Debate

 Strong opinions!
 CISC proponents---easy for compiler, fewer code bytes
 RISC proponents---better for optimizing compilers, can make

run fast with simple chip design

Current StatusCurrent Status
 For desktop processors, choice of ISA not a technical issue

 With enough hardware, can make anything run fast
 Code compatibility more important

 For embedded processors, RISC makes sense
 Smaller, cheaper, less power

