
Machine-Level Programming I:
Introduction

TopicsTopics
 Assembly Programmerʼs

Execution Model
 Accessing Information

 Registers

Systems I

2

IA32 Processors
Totally Dominate General Purpose CPU MarketTotally Dominate General Purpose CPU Market

Evolutionary DesignEvolutionary Design
 Starting in 1978 with 8086
 Added more features as time goes on
 Still support old features, although obsolete

Complex Instruction Set Computer (CISC)Complex Instruction Set Computer (CISC)
 Many different instructions with many different formats

 But, only small subset encountered with Linux programs
 Hard to match performance of Reduced Instruction Set

Computers (RISC)
 But, Intel has done just that!

3

X86 Evolution: Programmerʼs View
NameName DateDate TransistorsTransistors

80868086 19781978 29K29K
 16-bit processor. Basis for IBM PC & DOS
 Limited to 1MB address space. DOS only

gives you 640K

8028680286 19821982 134K134K
 Added elaborate, but not very useful,

addressing scheme
 Basis for IBM PC-AT and Windows

386386 19851985 275K275K
 Extended to 32 bits. Added “flat

addressing”
 Capable of running Unix
 Linux/gcc uses no instructions introduced

in later models

4

X86 Evolution: Programmerʼs View
NameName DateDate TransistorsTransistors

486486 19891989 1.9M1.9M
 Added on-chip floating-point unit

PentiumPentium 19931993 3.1M3.1M
Pentium/MMXPentium/MMX 19971997 4.5M4.5M

 Added special collection of instructions
for operating on 64-bit vectors of 1, 2, or
4 byte integer data

PentiumProPentiumPro 19951995 6.5M6.5M
 Added conditional move instructions
 Hardware can execute instructions out of

order

5

X86 Evolution: Programmerʼs View
NameName DateDate TransistorsTransistors

Pentium IIIPentium III 19991999 8.2M8.2M
 Added “streaming SIMD” instructions

for operating on 128-bit vectors of 1, 2,
or 4 byte integer or floating point data

Pentium 4Pentium 4 20012001 42M42M
 Added 8-byte formats and 144 new

instructions for streaming SIMD mode
 “Superpipelined” with very fast clocks

““NehalemNehalem”” 20092009 700M+700M+
 4 Cores on the same chip
 8MB+ of on-chip memory

6

X86 Evolution: Clones
Advanced Micro Devices (AMD)Advanced Micro Devices (AMD)

 Historically
AMD has followed just behind Intel
A little bit slower, a lot cheaper

 Recently
Drove 64-bit extensions to IA32 architecture
Acquired ATI (graphics chip company)
Increasing core counts too
6-core Opteron (Istanbul) 2009

Variety ofVariety of x86x86 chips in different marketschips in different markets
Embedded/low power (Atom, Neo)
Desktop/laptop
Server
Supercomputer

7

Abstract and Concrete Machine
Models

1) loops
2) conditionals
3) switch
4) Proc. call
5) Proc. return

Machine Models Data Control
1) char
2) int, float
3) double
4) struct, array
5) pointer

mem proc

C

Assembly
1) byte
2) 2-byte word
3) 4-byte long word
4) contiguous byte allocation
5) address of initial byte

3) branch/jump
4) call
5) retmem regs alu

processorStack Cond.
Codes

8

Assembly Programmerʼs View

Programmer-Visible StateProgrammer-Visible State
 EIP Program Counter

Address of next instruction
 Register File

Heavily used program data
 Condition Codes

Store status information about
most recent arithmetic operation

Used for conditional branching

E
I
P

Registers

CPU Memory

Object Code
Program Data

OS Data

Addresses

Data

Instructions

Stack

Condition
Codes

 Memory
 Byte addressable array
 Code, user data, (some) OS

data
 Includes stack used to

support procedures

9

By the By the architecturearchitecture of a system, I mean the complete and of a system, I mean the complete and
detailed specification of the user interface. detailed specification of the user interface. …… As As BlaauwBlaauw
has said, has said, ““Where architecture tells Where architecture tells whatwhat happens, happens,
implementation tells implementation tells howhow it is made to happen. it is made to happen.””

The Mythical Man-MonthThe Mythical Man-Month, Brooks, pg 45, Brooks, pg 45

Slide adapted from M.J. Irwin, 2005

10

Instruction Set Architecture
Principles
Contract between programmer and the hardwareContract between programmer and the hardware

 Defines visible state of the system
 Defines how state changes in response to instructions

Programmer: ISA is model of how a program will executeProgrammer: ISA is model of how a program will execute
Hardware Designer: ISA is formal definition of the correct way toHardware Designer: ISA is formal definition of the correct way to

execute a programexecute a program
 With a stable ISA, SW doesnʼt care what the HW looks like under

the covers
 Hardware implementations can change (drastically)
 As long as the HW implements the same ISA, all prior SW will still run

 Example: x86 ISA has spanned many chips
 Instructions have been added but the SW of prior chips still runs on

later chips

ISA specificationISA specification
 The binary encodings of the instruction set

11

Instruction Set Architecture
Contract between programmer and the hardwareContract between programmer and the hardware

 Defines visible state of the system
 Defines how state changes in response to instructions

Programmer: ISA is model of how a program willProgrammer: ISA is model of how a program will
executeexecute

Hardware Designer: ISA is formal definition of theHardware Designer: ISA is formal definition of the
correct way to execute a programcorrect way to execute a program

ISA specificationISA specification
 The binary encodings of the instruction set

12

ISA Basics

Op Mode Ra Rb

Mem
Regs

Before State

Mem
Regs

After State

instructionInstruction formats
Instruction types
Addressing modes

Data types
Operations
Interrupts/Events

Machine state
Memory organization
Register organization

13

Architecture vs. Implementation
Architecture:Architecture: defines what a computer systemdefines what a computer system

does in response to a program and a set ofdoes in response to a program and a set of
datadata
 Programmer visible elements of computer system

Implementation:Implementation: defines how a computer does defines how a computer does
itit
 Sequence of steps to complete operations
 Time to execute each operation
 Hidden “bookkeeping” functions

14

Examples
Architecture or Implementation?Architecture or Implementation?

 Number of GP registers
 Width of memory bus
 Binary representation of the instruction
sub r4,r2,#27

 Number of cycles to execute FP instruction
 How condition code bits are set on a move instruction
 Size of the instruction cache
 Type of FP format

15

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
 Code in files p1.c p2.c

 Compile with command: gcc -O p1.c p2.c -o p
Use optimizations (-O)
Put resulting binary in file p

16

Compiling Into Assembly
C CodeC Code

int sum(int x, int y)
{
 int t = x+y;
 return t;
}

Generated Assembly
_sum:

pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
movl %ebp,%esp
popl %ebp
ret

Obtain with command
gcc -O -S code.c

Produces file code.s

17

Assembly Characteristics
Minimal Data TypesMinimal Data Types

 “Integer” data of 1, 2, or 4 bytes
 Data values
 Addresses (untyped pointers)

 Floating point data of 4, 8, or 10 bytes
 No aggregate types such as arrays or structures

 Just contiguously allocated bytes in memory

Primitive OperationsPrimitive Operations
 Perform arithmetic function on register or memory data
 Transfer data between memory and register

 Load data from memory into register
 Store register data into memory

 Transfer control
 Unconditional jumps to/from procedures
 Conditional branches

18

Code for sum
0x401040 <sum>:

0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
0xec
0x5d
0xc3

Object Code
AssemblerAssembler

 Translates .s into .o
 Binary encoding of each instruction
 Nearly-complete image of executable

code
 Missing linkages between code in

different files

LinkerLinker
 Resolves references between files
 Combines with static run-time

libraries
 E.g., code for malloc, printf

 Some libraries are dynamically linked
 Linking occurs when program begins

execution

• Total of 13
bytes

• Each
instruction 1,
2, or 3 bytes

• Starts at
address
0x401040

19

Machine Instruction Example
C CodeC Code

 Add two signed integers

AssemblyAssembly
 Add 2 4-byte integers

“Long” words in GCC parlance
Same instruction whether

signed or unsigned
 Operands:

x: Register %eax
y: Memory M[%ebp+8]
t: Register %eax

» Return function value in %eax

Object CodeObject Code
 3-byte instruction
 Stored at address 0x401046

int t = x+y;

addl 8(%ebp),%eax

0x401046: 03 45 08

Similar to
expression
x += y

20

Disassembled
00401040 <_sum>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 8b 45 0c mov 0xc(%ebp),%eax
 6: 03 45 08 add 0x8(%ebp),%eax
 9: 89 ec mov %ebp,%esp
 b: 5d pop %ebp
 c: c3 ret
 d: 8d 76 00 lea 0x0(%esi),%esi

Disassembling Object Code

DisassemblerDisassembler
objdump -d p

 Useful tool for examining object code
 Analyzes bit pattern of series of instructions
 Produces approximate rendition of assembly code
 Can be run on either a.out (complete executable) or .o file

21

Disassembled
0x401040 <sum>: push %ebp
0x401041 <sum+1>: mov %esp,%ebp
0x401043 <sum+3>: mov 0xc(%ebp),%eax
0x401046 <sum+6>: add 0x8(%ebp),%eax
0x401049 <sum+9>: mov %ebp,%esp
0x40104b <sum+11>: pop %ebp
0x40104c <sum+12>: ret
0x40104d <sum+13>: lea 0x0(%esi),%esi

Alternate Disassembly

Within Within gdbgdb Debugger Debugger
gdb p

disassemble sum

 Disassemble procedure
x/13b sum

 Examine the 13 bytes starting at sum

Object
0x401040:

0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
0xec
0x5d
0xc3

22

What Can be Disassembled?

 Anything that can be interpreted as executable code
 Disassembler examines bytes and reconstructs assembly

source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

23

Whose Assembler?

Intel/Microsoft Differs from GASIntel/Microsoft Differs from GAS
 Operands listed in opposite order

mov Dest, Src movl Src, Dest
 Constants not preceded by ʻ$ʼ, Denote hex with ʻhʼ at end

100h $0x100

 Operand size indicated by operands rather than operator suffix
sub subl

 Addressing format shows effective address computation
[eax*4+100h] $0x100(,%eax,4)

lea eax,[ecx+ecx*2]
sub esp,8
cmp dword ptr [ebp-8],0
mov eax,dword ptr [eax*4+100h]

leal (%ecx,%ecx,2),%eax
subl $8,%esp
cmpl $0,-8(%ebp)
movl $0x100(,%eax,4),%eax

Intel/Microsoft Format GAS/Gnu Format

24

Moving Data
Moving DataMoving Data

movl Source,Dest:
 Move 4-byte (“long”) word
 Lots of these in typical code

Operand TypesOperand Types
 Immediate: Constant integer data

 Like C constant, but prefixed with ʻ$ʼ
 E.g., $0x400, $-533
 Encoded with 1, 2, or 4 bytes

 Register: One of 8 integer registers
 But %esp and %ebp reserved for special use
 Others have special uses for particular instructions

 Memory: 4 consecutive bytes of memory
 Various “address modes”

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

25

movl Operand Combinations

 Cannot do memory-memory transfers with single
instruction

movl

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Destination

movl $0x4,%eax

movl $-147,(%eax)

movl %eax,%edx

movl %eax,(%edx)

movl (%eax),%edx

C Analog

temp = 0x4;

*p = -147;

temp2 = temp1;

*p = temp;

temp = *p;

26

Simple Addressing Modes
NormalNormal (R)(R) MemMem[[RegReg[R]][R]]

 Register R specifies memory address
movl (%ecx),%eax

DisplacementDisplacement D(R)D(R) MemMem[[RegReg[R]+D][R]+D]
 Register R specifies start of memory region
 Constant displacement D specifies offset
movl 8(%ebp),%edx

27

Summary
TodayToday

 ISA/processor evolution (for x86)
 Programmer machine models
 Introduction to ISA and usage

Next timeNext time
 Memory access
 Arithmetic operations
 C pointers and Addresses

