
Full Name:

Course Name, Fall/Spring 200x

Master Exam
Date, 200x

Instructions:

� Make sure that your exam is not missing any sheets, then write your full name on the front.

� Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

� The exam has a maximum score of XXX points.

� The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

� This exam is OPEN BOOK. You may use any books or notes you like. Good luck!

1 (10):

2 (12):

3 (10):

4 (06):

5 (08):

6 (03):

7 (10):

8 (08):

TOTAL (67):

Page 1 of 0

Problem 1. (6 points):
Consider the following datatype definitions on an IA32 (x86) machine.

typedef struct {
char c;
double *p;
int i;
double d;
short s;

} struct1;

typedef union {
char c;
double *p;
int i;
double d;
short s;

} union1;

A. Using the template below (allowing a maximum of 32 bytes), indicate the allocation of data for a structure
of type struct1. Mark off and label the areas for each individual element (there are 5 of them). Cross
hatch the parts that are allocated, but not used (to satisfy alignment).

Assume the alignment rules discussed in lecture: data types of size � must be aligned on � -byte boundaries.
Clearly indicate the right hand boundary of the data structure with a vertical line.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
+---+
| |
+---+

B. How many bytes are allocated for an object of type struct1?

C. What alignment is required for an object of type struct1? (If an object must be aligned on an � -byte
boundary, then your answer should be � .)

D. If we define the fields of struct1 in a different order, we can reduce the number of bytes wasted by
each variable of type struct1. What is the number of unused, allocated bytes in the best case?

E. How many bytes are allocated for an object of type union1?

F. What alignment is required for an object of type union1? (If an object must be aligned on an � -byte
boundary, then your answer should be � .)

Page 2 of 0

Problem 2. (12 points):
In the following questions assume the variables a and b are signed integers and that the machine uses two’s
complement representation. Also assume that MAX INT is the maximum integer, MIN INT is the minimum
integer, and W is one less than the word length (e.g., W = 31 for 32-bit integers).
Match each of the descriptions on the left with a line of code on the right (write in the letter). You will be
given 2 points for each correct match.

1. One’s complement of a

2. a.

3. a & b.

4. a * 7.

5. a / 4 .

6. (a < 0) ? 1 : -1 .

a. ˜(˜a | (b ˆ (MIN_INT + MAX_INT)))

b. ((a ˆ b) & ˜b) | (˜(a ˆ b) & b)

c. 1 + (a << 3) + ˜a

d. (a << 4) + (a << 2) + (a << 1)

e. ((a < 0) ? (a + 3) : a) >> 2

f. a ˆ (MIN_INT + MAX_INT)

g. ˜((a | (˜a + 1)) >> W) & 1

h. ˜((a >> W) << 1)

i. a >> 2

Page 3 of 0

Problem 3. (8 points):
The following procedure takes a single-precision floating point number in IEEE format and prints out infor-
mation about what category of number it is. Fill in the missing code so that it performs this classification
correctly.

void classify_float(float f)�

/* Unsigned value u has same bit pattern as f */
unsigned u = *(unsigned *) &f;
/* Split u into the different parts */
int sign = (u >> 31) & 0x1; // The sign bit

int exp = _______________; // The exponent field

int frac = _______________; // The fraction field

/* The remaining expressions can be written in terms of the
values of sign, exp, and frac */

if (______________________)
printf("Plus or minus zero\");

else if (______________________)
printf("Nonzero, denormalized\");

else if (______________________)
printf("Plus or minus infinity\");

else if (______________________)
printf("NaN\");

else if (______________________)
printf("Greater than -1.0 and less than 1.0\");

else if (______________________)
printf("Less than or equal to -1.0\");

else
printf("Greater than or equal to 1.0\");�

Page 4 of 0

Problem 4. (12 points):
Consider the following 16-bit floating point representation based on the IEEE floating point format:

� There is a sign bit in the most significant bit.

� The next seven bits are the exponent. The exponent bias is 63.

� The last eight bits are the significand.

The rules are like those in the IEEE standard (normalized, denormalized, representation of 0, infinity, and
NAN).
As described in Class 10, we consider the floating point format to encode numbers in a form:

���������
	��
	����

where
�

is the mantissa and � is the exponent.
Fill in the table below for the following numbers, with the following instructions for each column:

Hex: The 4 hexadecimal digits describing the encoded form.
�

: The fractional value of the mantissa. This should be a number of the form � or ����� , where � is an
integer, and � is an integral power of 2. Examples include: 0, 67/64, and 1/256.

� : The integer value of the exponent.

Value: The numeric value represented. Use the notation � or �
	����

, where � and � are integers.

As an example, to represent the number � � � , we would have ��� � , � �!� ��" , and �#� � . Our number
would therefore have an exponent field of 0x40 (decimal value $&%(' � �)$ ") and a significand field 0xC0
(binary

�&� �&�&�&�&�&�+*), giving a hex representation 40C0.
You need not fill in entries marked “—”.

Description Hex
� � Value

� � —

Smallest value , �

Largest Denormalized
�.-

— — —

Number with hex representation 3AA0 —

Page 5 of 0

Problem 5. (12 points):
Consider the following 5-bit floating point representation based on the IEEE floating point format. There is
a sign bit in the most significant bit. The next three bits are the exponent, with an exponent bias is 3. The last
bit is the fraction. The rules are like those in the IEEE standard (normalized, denormalized, representation
of 0, infinity, and NAN).
As described in Handout #1, we consider the floating point format to encode numbers in a form:

� � ������� � 	�� 	�� �

where
�

is the significand and � is the exponent.
Fill in missing entries in the table below with the following instructions for each column:

Description: Some unique property of this number, such as, “The largest denormalized value.”

Binary: The 5 bit representation.
�

: The value of the Mantissa written in decimal format.

� : The integer value of the exponent.

Value: The numeric value represented, written in decimal format.

You need not fill in entries marked “—”. For the arithmetic expressions, recall that the rule with IEEE
format is to round to the number nearest the exact result. Use “round-to-even” rounding.

Description Binary
� � Value

Minus Zero
� ��� �

Positive Infinity — — ' -

01101

Smallest number , �
One

�
� �

" � � � ��� ���
�
� �
' %�� �

Page 6 of 0

Problem 6. (12 points):
Consider the following

�
-bit floating point representation based on the IEEE floating point format:

� There is a sign bit in the most significant bit.

� The next 3 bits are the exponent. The exponent bias is
������� � � � % .

� The last 4 bits are the fraction.

� The representation encodes numbers of the form:
� � ������� � 	 � 	 � � , where

�
is the significand

and � is the biased exponent.

The rules are like those in the IEEE standard(normalized, denormalized, representation of � , infinity, and
NAN). FILL in the table below. Here are the instructions for each field:

� Binary: The 8 bit binary representation.

� M: The value of the significand. This should be a number of the form � or � � , where � is an integer,

and � is an integral power of
�
. Examples include � , �	 .

� E: The integer value of the exponent.

� Value:The numeric value represented.

Note: you need not fill in entries marked with ”—”.

Description Binary
� � Value

Minus zero
� ��� �

— 0 100 0101

Smallest denormalized (negative)

Largest normalized (positive)

One
�
� �

— 5.5

Positive infinity — — ' -

Page 7 of 0

Problem 7. (20 points):
We are running programs on a machine with the following characteristics:

� Values of type int are 32 bits. They are represented in two’s complement, and they are right shifted
arithmetically. Values of type unsigned are 32 bits.

� Values of type float are represented using the 32-bit IEEE floating point format, while values of
type double use the 64-bit IEEE floating point format.

We generate arbitrary values x, y, and z, and convert them to other forms as follows:

/* Create some arbitrary values */
int x = random();
int y = random();
int z = random();
/* Convert to other forms */
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
double dx = (double) x;
double dy = (double) y;
double dz = (double) z;

For each of the following C expressions, you are to indicate whether or not the expression always yields 1.
If so, circle “Y”. If not, circle “N”. You will be graded on each problem as follows:

� If you circle no value, you get 0 points.

� If you circle the right value, you get 2 points.

� If you circle the wrong value, you get
���

points (so don’t just guess wildly).

Expression Always True?

(x<y) == (-x>-y) Y N

((x+y)<<4) + y-x == 17*y+15*x Y N

˜x+˜y+1 == ˜(x+y) Y N

ux-uy == -(y-x) Y N

(x >= 0) || (x < ux) Y N

((x >> 1) << 1) <= x Y N

(double)(float) x == (double) x Y N

dx + dy == (double) (y+x) Y N

dx + dy + dz == dz + dy + dx Y N

dx * dy * dz == dz * dy * dx Y N

Page 8 of 0

Problem 8. (9 points):
Consider the following C declarations:

typedef struct {
short code;
long start;
char raw[3];
double data;

} OldSensorData;

typedef struct {
short code;
short start;
char raw[5];
short sense;
short ext;
double data;

} NewSensorData;

A. Using the templates below (allowing a maximum of 24 bytes), indicate the allocation of data for
structs of type OldSensorDataNewSensorData. Mark off and label the areas for each individ-
ual element (arrays may be labeled as a single element). Cross hatch the parts that are allocated,
but not used (to satisfy alignment).

Assume the Linux alignment rules discussed in class. Clearly indicate the right hand boundary of
the data structure with a vertical line.

OldSensorData:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
+--+
| |
+--+

NewSensorData:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
+--+
| |
+--+

Page 9 of 0

B. Now consider the following C code fragment:

void foo(OldSensorData *oldData)
{

NewSensorData *newData;

/* this zeros out all the space allocated for oldData */
bzero((void *)oldData, sizeof(oldData));

oldData->code = 0x104f;
oldData->start = 0x80501ab8;
oldData->raw[0] = 0xe1;
oldData->raw[1] = 0xe2;
oldData->raw[2] = 0x8f;
oldData->raw[-5] = 0xff;
oldData->data = 1.5;

newData = (NewSensorData *) oldData;

...

Once this code has run, we begin to access the elements of newData. Below, give the value of each
element of newData that is listed. Assume that this code is run on a Little-Endian machine such
as a Linux/x86 machine. You must give your answer in hexadecimal format. Be careful about byte
ordering!.

(a) newData->start = 0x________________

(b) newData->raw[0] = 0x________________

(c) newData->raw[2] = 0x________________

(d) newData->raw[4] = 0x________________

(e) newData->sense = 0x________________

Page 10 of 0

Problem 9. (9 points):
Assume we are running code on a $ -bit machine using two’s complement arithmetic for signed integers. A
“short” integer is encoded using % bits. Fill in the empty boxes in the table below. The following definitions
are used in the table:

short sy = -3;
int y = sy;
int x = -17;
unsigned ux = x;

Note: You need not fill in entries marked with “–”.

Expression Decimal Representation Binary Representation

Zero �
–

� $
– 01 0010

� �

�
� , , �

TMax

�
TMin

TMin ' TMin

Page 11 of 0

Problem 10. (8 points):
Consider the following 5-bit floating point representation based on the IEEE floating point format:

� There is a sign bit in the most significant bit.

� The next two bits are the exponent. The exponent bias is 1.

� The last two bits are the significand.

The rules are like those in the IEEE standard (normalized, denormalized, representation of 0,
-

, and NAN).
As described in Class 10, the floating point format encodes numbers in a form:

������� � 	��
	�� �

where
�

is the mantissa and � is the exponent. The table below enumerates the entire non-negative range
for this 5-bit floating point representation. Fill in the blank table entries using the following directions:

� : The integer value of the exponent.
�

: The fractional value of the mantissa. Your answer must be expressed as a fraction of the form ����" .
Value: The numeric value represented. Your answer must be expressed as a fraction of the form � ��" .
You need not fill in entries marked “—”.

Bits � �
Value

0 00 00 — — 0

0 00 01

0 00 10

0 00 11

0 01 00

0 01 01

0 01 10

0 01 11

0 10 00
� " ��" � ��"

0 10 01

0 10 10

0 10 11

Page 12 of 0

Problem 11. (8 points):
Consider a 5-bit two’s complement representation. Fill in the empty boxes in the following table. Addition
and subtraction should be performed based on the rules for 5-bit, two’s complement arithmetic

Number Decimal Representation Binary Representation

Zero �
n/a

�
�

n/a
�

n/a
��� "

n/a 0 1100

n/a 1 0100

TMax

TMin

TMin ' TMin

TMin ' �

TMax ' �
�

TMax

�
TMin

Page 13 of 0

Problem 12. (10 points):
Consider a 6-bit two’s complement representation. Fill in the empty boxes in the following table:

Number Decimal Representation Binary Representation

Zero 0

n/a -1

n/a 5

n/a -10

n/a 01 1010

n/a 10 0110

TMax

TMin

TMax ' TMax

TMin ' TMin

TMin ' �

TMin
���

TMax ' �
�

TMax

�
TMin

Page 14 of 0

Problem 13. (8 points):
Consider the source code below, where M and N are constants declared with #define.

int mat1[M][N];
int mat2[N][M];

int sum_element(int i, int j)
{
return mat1[i][j] + mat2[i][j];

}

A. Suppose the above code generates the following assembly code:

sum_element:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl 12(%ebp),%ecx
sall $2,%ecx
leal 0(,%eax,8),%edx
subl %eax,%edx
leal (%eax,%eax,4),%eax
movl mat2(%ecx,%eax,4),%eax
addl mat1(%ecx,%edx,4),%eax
movl %ebp,%esp
popl %ebp
ret

What are the values of M and N?

M =

N =

Page 15 of 0

Problem 14. (8 points):
Consider the source code below, where M and N are constants declared with #define.

int array1[M][N];
int array2[N][M];

int copy(int i, int j)
{

array1[i][j] = array2[j][i];
}

Suppose the above code generates the following assembly code:

copy:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ecx
movl 12(%ebp),%ebx
leal (%ecx,%ecx,8),%edx
sall $2,%edx
movl %ebx,%eax
sall $4,%eax
subl %ebx,%eax
sall $2,%eax
movl array2(%eax,%ecx,4),%eax
movl %eax,array1(%edx,%ebx,4)
popl %ebx
movl %ebp,%esp
popl %ebp
ret

What are the values of M and N?

M =

N =

Page 16 of 0

Problem 15. (8 points):
Consider the source code below, where M and N are constants declared with #define.

int mat1[M][N];
int mat2[N][M];

int copy_element(int i, int j)
{

mat1[i][j] = mat2[j][i];
}

This generates the following assembly code:

copy_element:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ecx
movl 12(%ebp),%ebx
movl %ecx,%edx
leal (%ebx,%ebx,8),%eax
sall $4,%edx
sall $2,%eax
subl %ecx,%edx
movl mat2(%eax,%ecx,4),%eax
sall $2,%edx
movl %eax,mat1(%edx,%ebx,4)
movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

A. What is the value of M:

B. What is the value of N:

Page 17 of 0

Problem 16. (6 points):
Consider the following code fragment containing the incomplete definition of a data type matrix entry
with 4 fields.

struct matrix_entry{

____ a;

____ b;

int c;

____ d;

};

struct matrix_entry matrix[2][5];

int return_entry(int i, int j){
return matrix[i][j].c;

}

Complete the above definition of matrix entry so that the following assembly code could be generated
from it on a Linux/x86 machine:

return_entry:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
leal (%eax,%eax,4),%eax
addl 12(%ebp),%eax
sall $4,%eax
movl matrix+4(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

Notes
� Note that there are multiple correct answers.

� Choose your answers from the following types, assuming the following sizes and alignments:
Type Size (bytes) Alignment (bytes)

char 1 1
short 2 2
int 4 4

double 8 4
Page 18 of 0

Problem 17. (8 points):
Consider the source code below, where M and N are constants declared with #define.

int array1[M][N];
int array2[N][M];

void copy(int i, int j)
{

array1[i][j] = array2[j][i];
}

Suppose the above code generates the following assembly code:

copy:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ecx
movl 12(%ebp),%eax
leal 0(,%eax,4),%ebx
leal 0(,%ecx,8),%edx
subl %ecx,%edx
addl %ebx,%eax
sall $2,%eax
movl array2(%eax,%ecx,4),%eax
movl %eax,array1(%ebx,%edx,4)
popl %ebx
movl %ebp,%esp
popl %ebp
ret

What are the values of M and N?

M =

N =

Page 19 of 0

Problem 18. (14 points):
Consider the source code below, used to keep track of the rooms currently reserved in a family-run hotel.
Each entry in the residents array stores a name of the customer reserving the room. FLOORS represents
the number of floors in the hotel. ROOMS represents the number of rooms per floor. Both are constants
declared with #define. LEN, the maximum number of bytes allocated for a name, is defined to be 12.

char residents[FLOORS][ROOMS][LEN];

void
reserve_room(int floor, int room, char *custname)
{

strcpy(residents[floor][room], custname);
}

The assembly code for the function reserve room looks like this:

reserve_room:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
movl 16(%ebp),%edx
pushl %edx
movl 8(%ebp),%edx
sall $4,%edx
subl 8(%ebp),%edx
leal (%eax,%eax,2),%eax
leal residents(,%eax,4),%eax
leal (%eax,%edx,4),%edx
pushl %edx
call strcpy
movl %ebp,%esp
popl %ebp
ret

A. What is the value of ROOMS?

B. Due to a strange bug, the program accesses residents[0][1][-2]. What value is actually
being accessed? (Express your answer as an integer triplet (-,-,-). You may assume that FLOORS and
ROOMS are both greater than 1)

Page 20 of 0

C. The programmer realizes that this implementation is wasteful of memory. Successive fires in several
memory chip factories in Taiwan drive up memory prices and finally convince him to improve the memory
efficiency of his implementation to maintain the competitiveness of the family hotel.

The declaration of residents is changed to be a two dimensional array of pointers to character strings
(names). The new code allocates memory for customer names only for those rooms that are actually re-
served. Otherwise, residents[f][r] stores a NULL pointer. For simplicity, assume there is no
storage overhead due to malloc.

The new declaration looks like this:

char *residents[FLOORS][ROOMS];

void
reserve_room(int floor, int room, char *custname)
{

residents[floor][room] = malloc(LEN);
strcpy(residents[floor][room], custname);

}

After a few months. The programmer goes back to review the memory savings of his improved scheme.
During that period, the hotel was 20% reserved. The programmer is delighted because the savings are found
to be 168 bytes! How many floors does this hotel have? (that is, what is the value of FLOORS?)

Page 21 of 0

In the following problem, you are given the task of reconstructing C code based on some declarations of C
structures and unions, and the IA32 assembly code generated when compiling the C code.

Below are the data structure declarations. (Note that this is a single declaration which includes several data
structures; they are shown horizontally rather than vertically simply so that they fit on one page.)

struct s1 {
char a[3];
union u1 b;
int c;

};

struct s2 {
struct s1 *d;
char e;
int f[4];
struct s2 *g;

};

union u1 {
struct s1 *h;
struct s2 *i;
char j;

};

You may find it helpful to diagram these data structures in the space below:

Page 22 of 0

Problem 19. (12 points):
For each IA32 assembly code sequence below on the left, fill in the missing portion of corresponding C
source line on the right.

A. proc1:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl 12(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

int proc1(struct s2 *x)
{
return x->___________________ ;

}

B. proc2:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl 4(%eax),%eax
movl 20(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

int proc2(struct s1 *x)
{
return x->___________________ ;

}

C. proc3:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%eax
movsbl 4(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

char proc3(union u1 *x)
{
return x->___________________ ;

}

D. proc4:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%eax
movl 24(%eax),%eax
movl (%eax),%eax
movsbl 1(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

char proc4(union u1 *x)
{
return x->___________________ ;

}

Page 23 of 0

Problem 20. (8 points):
Condider the following assembly code for a C for loop:

loop:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%ecx
movl 12(%ebp),%edx
xorl %eax,%eax
cmpl %edx,%ecx
jle .L4

.L6:
decl %ecx
incl %edx
incl %eax
cmpl %edx,%ecx
jg .L6

.L4:
incl %eax
movl %ebp,%esp
popl %ebp
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you
may only use the symbolic variables x, y, and result in your expressions below — do not use register
names.)

int loop(int x, int y)
{

int result;

for (_____________; ___________; result++) {

__________;

__________;
}

__________;

return result;
}

Page 24 of 0

Problem 21. (8 points):
Consider the following assembly representation of a function foo containing a for loop:

foo:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ebx
leal 2(%ebx),%edx
xorl %ecx,%ecx
cmpl %ebx,%ecx
jge .L4

.L6:
leal 5(%ecx,%edx),%edx
leal 3(%ecx),%eax
imull %eax,%edx
incl %ecx
cmpl %ebx,%ecx
jl .L6

.L4:
movl %edx,%eax
popl %ebx
movl %ebp,%esp
popl %ebp
ret

Fill in the blanks to provide the functionality of the loop:

int foo(int a)�

int i;
int result = _____________;

for(________; ________; i++)
�

__________________;

__________________;

�

return result;�

Page 25 of 0

Problem 22. (8 points):
This problem tests your understanding of how for loops in C relate to IA32 machine code
Consider the following IA32 assembly code for a procedure foo():

foo:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%ecx
xorl %eax,%eax
movl 8(%ebp),%edx
cmpl %ecx,%edx
jle .L3
.align 4

.L5:
addl %edx,%eax
decl %edx
cmpl %ecx,%edx
jg .L5

.L3:
leave
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you
may only use symbolic variables � , � , � , and ����� ����� , from the source code in your expressions below — do
not use register names.)

int foo(int x, int y)
{
int i, result=0;

for (i=________; ____________________________; _________) {

______________;

}

return result;
}

Page 26 of 0

Problem 23. (10 points):
Condider the following assembly code for a C for loop:

loop:
pushl %ebp
movl %esp,%ebp
movl 0x8(%ebp),%edx
movl %edx,%eax
addl 0xc(%ebp),%eax
leal 0xffffffff(%eax),%ecx
cmpl %ecx,%edx
jae .L4

.L6:
movb (%edx),%al
xorb (%ecx),%al
movb %al,(%edx)
xorb (%ecx),%al
movb %al,(%ecx)
xorb %al,(%edx)
incl %edx
decl %ecx
cmpl %ecx,%edx
jb .L6

.L4:
movl %ebp,%esp
popl %ebp
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you
may only use the symbolic variables h, t and len in your expressions below — do not use register names.)

void loop(char *h, int len)
{

char *t;

for (_____________; ___________; h++,t--) {

_______________;

_______________;

_______________;
}

return;
} Page 27 of 0

Problem 24. (10 points):
A C function looper and the assembly code it compiles to on an IA-32 machine running Linux/GAS is
shown below:

looper:
pushl %ebp
movl %esp,%ebp
pushl %esi
pushl %ebx
movl 8(%ebp),%ebx
movl 12(%ebp),%esi
xorl %edx,%edx
xorl %ecx,%ecx
cmpl %ebx,%edx
jge .L25

.L27:
movl (%esi,%ecx,4),%eax
cmpl %edx,%eax
jle .L28
movl %eax,%edx

.L28:
incl %edx
incl %ecx
cmpl %ebx,%ecx
jl .L27

.L25:
movl %edx,%eax
popl %ebx
popl %esi
movl %ebp,%esp
popl %ebp
ret

int looper(int n, int *a) {
int i;
int x = ______________;

for(i = ____________;

________________;

i++) {

if (___________________)

x = _________________;

____________________;
}

return x;
}

Based on the assembly code, fill in the blanks in the C source code.

Notes:

� You may only use the C variable names n, a, i and x, not register names.

� Use array notation in showing accesses or updates to elements of a.

Page 28 of 0

Problem 25. (8 points):
Consider the following IA32 code for a procedure foo():

foo:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%ecx
movl 16(%ebp),%edx
movl 12(%ebp),%eax
decl %eax
js .L3

.L7:
cmpl %edx,(%ecx,%eax,4)
jne .L3
decl %eax
jns .L7

.L3:
movl %ebp,%esp
popl %ebp
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you
may only use symbolic variables � , � , � � � , and

�
from the source code in your expressions below—do not

use register names.)

int foo(int *a, int n, int val) {
int i;

for (i = _________; ____________________________ ; i =___________) {
;

}
return i;

}

Page 29 of 0

Buffer overflow

The next problem concerns the following C code, excerpted from Dr. Evil’s best-selling autobiography,
“World Domination My Way”. He calls the program NukeJr, his baby nuclear bomb phase.

/*
* NukeJr - Dr. Evil’s baby nuke
*/

#include <stdio.h>

int overflow(void);
int one = 1;

/* main - NukeJr’s main routine */
int main() {

int val = overflow();

val += one;
if (val != 15213)
printf("Boom!\n");

else
printf("Curses! You’ve defused NukeJr!\n");

_exit(0); /* syscall version of exit that doesn’t need %ebp */
}

/* overflow - writes to stack buffer and returns 15213 */
int overflow() {

char buf[4];
int val, i=0;

while(scanf("%x", &val) != EOF)
buf[i++] = (char)val;

return 15213;
}

Page 30 of 0

Buffer overflow (cont)

Here is the corresponding machine code for NukeJr when compiled and linked on a Linux/x86 machine:

08048560 <main>:
8048560: 55 pushl %ebp
8048561: 89 e5 movl %esp,%ebp
8048563: 83 ec 08 subl $0x8,%esp
8048566: e8 31 00 00 00 call 804859c <overflow>
804856b: 03 05 90 96 04 addl 0x8049690,%eax # val += one;
8048570: 08
8048571: 3d 6d 3b 00 00 cmpl $0x3b6d,%eax # val == 15213?
8048576: 74 0a je 8048582 <main+0x22>
8048578: 83 c4 f4 addl $0xfffffff4,%esp
804857b: 68 40 86 04 08 pushl $0x8048640
8048580: eb 08 jmp 804858a <main+0x2a>
8048582: 83 c4 f4 addl $0xfffffff4,%esp
8048585: 68 60 86 04 08 pushl $0x8048660
804858a: e8 75 fe ff ff call 8048404 <_init+0x44> # call printf
804858f: 83 c4 10 addl $0x10,%esp
8048592: 83 c4 f4 addl $0xfffffff4,%esp
8048595: 6a 00 pushl $0x0
8048597: e8 b8 fe ff ff call 8048454 <_init+0x94> # call _exit

0804859c <overflow>:
804859c: 55 pushl %ebp
804859d: 89 e5 movl %esp,%ebp
804859f: 83 ec 10 subl $0x10,%esp
80485a2: 56 pushl %esi
80485a3: 53 pushl %ebx
80485a4: 31 f6 xorl %esi,%esi
80485a6: 8d 5d f8 leal 0xfffffff8(%ebp),%ebx
80485a9: eb 0d jmp 80485b8 <overflow+0x1c>
80485ab: 90 nop
80485ac: 8d 74 26 00 leal 0x0(%esi,1),%esi
80485b0: 8a 45 f8 movb 0xfffffff8(%ebp),%al # L1: loop start
80485b3: 88 44 2e fc movb %al,0xfffffffc(%esi,%ebp,1)
80485b7: 46 incl %esi
80485b8: 83 c4 f8 addl $0xfffffff8,%esp
80485bb: 53 pushl %ebx
80485bc: 68 80 86 04 08 pushl $0x8048680
80485c1: e8 6e fe ff ff call 8048434 <_init+0x74> # call scanf
80485c6: 83 c4 10 addl $0x10,%esp
80485c9: 83 f8 ff cmpl $0xffffffff,%eax
80485cc: 75 e2 jne 80485b0 <overflow+0x14> # goto L1
80485ce: b8 6d 3b 00 00 movl $0x3b6d,%eax
80485d3: 8d 65 e8 leal 0xffffffe8(%ebp),%esp
80485d6: 5b popl %ebx
80485d7: 5e popl %esi
80485d8: 89 ec movl %ebp,%esp
80485da: 5d popl %ebp
80485db: c3 ret

Page 31 of 0

Problem 26. (10 points):
This problem uses the NukeJr program to test your understanding of the stack discipline and byte ordering.
Here are some notes to help you work the problem:

� Recall that Linux/x86 machines are Little Endian.

� The scanf("%x", &val) function reads a whitespace-delimited sequence of characters from
stdin that represents a hex integer, converts the sequence to a 32-bit int, and assigns the result
to val. The call to scanf returns either 1 (if it converted a sequence) or EOF (if no more sequences
on stdin).

For example, calling scanf four time on the input string "0 a ff" would have the following
result:

– 1st call to scanf: val=0x0 and scanf returns 1.

– 2nd call to scanf: val=0xa and scanf returns 1.

– 3rd call to scanf: val=0xff and scanf returns 1.

– 4th call to scanf: val=? and scanf returns EOF.

A. After the subl instruction at address 0x804859f in function overflow completes, the stack
contains a number of objects which are shown in the table below. Determine the address of each
object as a byte offset from buf[0].

Stack object Address of stack object

return address &buf[0] + _______

old %ebp &buf[0] + _______

buf[3] &buf[0] + _______

buf[2] &buf[0] + _______

buf[1] &buf[0] + 1

buf[0] &buf[0] + 0

B. What input string would defuse NukeJr by causing the call to overflow to return to address
0x8048571 instead of 804856b? Notes: (i) Your solution is allowed to trash the contents of
the %ebp register. (ii) Each underscore is a one or two digit hex number.

Answer: "0 0 0 0 ___ ___ ___ ___ ___ ___ ___ ___ "

Page 32 of 0

Problem 27. (7 points):
Match each of the assembler routines on the left with the equivalent C function on the right.

foo1:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
sall $4,%eax
subl 8(%ebp),%eax
movl %ebp,%esp
popl %ebp
ret

foo2:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
testl %eax,%eax
jge .L4
addl $15,%eax

.L4:
sarl $4,%eax
movl %ebp,%esp
popl %ebp
ret

foo3:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
shrl $31,%eax
movl %ebp,%esp
popl %ebp
ret

int choice1(int x)
{

return (x < 0);
}

int choice2(int x)
{

return (x << 31) & 1;
}

int choice3(int x)
{

return 15 * x;
}

int choice4(int x)
{

return (x + 15) /4
}

int choice5(int x)
{

return x / 16;
}

int choice6(int x)
{

return (x >> 31);
}

Fill in your answers here:
foo1 corresponds to choice .
foo2 corresponds to choice .
foo3 corresponds to choice .

Page 33 of 0

Problem 28. (3 points):
Consider the following C functions and assembly code:

int fun1(int a, int b)
{

if (a < b)
return a;

else
return b;

}

int fun2(int a, int b)
{

if (b < a)
return b;

else
return a;

}

int fun3(int a, int b)
{

unsigned ua = (unsigned) a;
if (ua < b)

return b;
else

return ua;
}

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%edx
movl 12(%ebp),%eax
cmpl %eax,%edx
jge .L9
movl %edx,%eax

.L9:
movl %ebp,%esp
popl %ebp
ret

Which of the functions compiled into the assembly code shown?

Page 34 of 0

Problem 29. (3 points):
Consider the following C functions and assembly code:

int fun7(int a)
{

return a * 30;
}

int fun8(int a)
{

return a * 34;
}

int fun9(int a)
{

return a * 18;
}

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
sall $4,%eax
addl 8(%ebp),%eax
addl %eax,%eax
movl %ebp,%esp
popl %ebp
ret

Which of the functions compiled into the assembly code shown?

Page 35 of 0

Problem 30. (3 points):

Consider the following C functions and assembly code:

int fun4(int *ap, int *bp)
{

int a = *ap;
int b = *bp;
return a+b;

}

int fun5(int *ap, int *bp)
{

int b = *bp;
*bp += *ap;
return b;

}

int fun6(int *ap, int *bp)
{

int a = *ap;
*bp += *ap;
return a;

}

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%edx
movl 12(%ebp),%eax
movl %ebp,%esp
movl (%edx),%edx
addl %edx,(%eax)
movl %edx,%eax
popl %ebp
ret

Which of the functions compiled into the assembly code shown?

Page 36 of 0

The next problem concerns the following C code:

/* copy string x to buf */
void foo(char *x)

�

int buf[1];
strcpy((char *)buf, x);�

void callfoo()
�

foo("abcdefghi");�

Here is the corresponding machine code on a Linux/x86 machine:

080484f4 <foo>:
080484f4: 55 pushl %ebp
080484f5: 89 e5 movl %esp,%ebp
080484f7: 83 ec 18 subl $0x18,%esp
080484fa: 8b 45 08 movl 0x8(%ebp),%eax
080484fd: 83 c4 f8 addl $0xfffffff8,%esp
08048500: 50 pushl %eax
08048501: 8d 45 fc leal 0xfffffffc(%ebp),%eax
08048504: 50 pushl %eax
08048505: e8 ba fe ff ff call 80483c4 <strcpy>
0804850a: 89 ec movl %ebp,%esp
0804850c: 5d popl %ebp
0804850d: c3 ret

08048510 <callfoo>:
08048510: 55 pushl %ebp
08048511: 89 e5 movl %esp,%ebp
08048513: 83 ec 08 subl $0x8,%esp
08048516: 83 c4 f4 addl $0xfffffff4,%esp
08048519: 68 9c 85 04 08 pushl $0x804859c # push string address
0804851e: e8 d1 ff ff ff call 80484f4 <foo>
08048523: 89 ec movl %ebp,%esp
08048525: 5d popl %ebp
08048526: c3 ret

Page 37 of 0

Problem 31. (8 points):
This problem tests your understanding of the stack discipline and byte ordering. Here are some notes to
help you work the problem:

� strcpy(char *dst, char *src) copies the string at address src (including the terminating
’\0’ character) to address dst. It does not check the size of the destination buffer.

� Recall that Linux/x86 machines are Little Endian.

� You will need to know the hex values of the following characters:

Character Hex value Character Hex value

’a’ 0x61 ’f’ 0x66
’b’ 0x62 ’g’ 0x67
’c’ 0x63 ’h’ 0x68
’d’ 0x64 ’i’ 0x69
’e’ 0x65 ’\0’ 0x00

Now consider what happens on a Linux/x86 machine when callfoo calls foo with the input string
“abcdefghi”.

A. List the contents of the following memory locations immediately after strcpy returns to foo. Each
answer should be an unsigned 4-byte integer expressed as 8 hex digits.

buf[0] = 0x____________________

buf[1] = 0x____________________

buf[2] = 0x____________________

B. Immediately before the ret instruction at address 0x0804850d executes, what is the value of the
frame pointer register %ebp?

%ebp = 0x____________________

C. Immediately after the ret instruction at address 0x0804850d executes, what is the value of the
program counter register %eip?

%eip = 0x____________________

Page 38 of 0

The next problem concerns the following C code. This program reads a string on standard input and prints
an integer in hexadecimal format based on the input string it read.

#include <stdio.h>

/* Read a string from stdin into buf */
int evil_read_string()
{

int buf[2];

scanf("%s",buf);
return buf[1];

}

int main()
{

printf("0x%x\n", evil_read_string());
}

Here is the corresponding machine code on a Linux/x86 machine:

08048414 <evil_read_string>:
8048414: 55 push %ebp
8048415: 89 e5 mov %esp,%ebp
8048417: 83 ec 14 sub $0x14,%esp
804841a: 53 push %ebx
804841b: 83 c4 f8 add $0xfffffff8,%esp
804841e: 8d 5d f8 lea 0xfffffff8(%ebp),%ebx
8048421: 53 push %ebx address arg for scanf

8048422: 68 b8 84 04 08 push $0x80484b8 format string for scanf

8048427: e8 e0 fe ff ff call 804830c <_init+0x50> call scanf

804842c: 8b 43 04 mov 0x4(%ebx),%eax
804842f: 8b 5d e8 mov 0xffffffe8(%ebp),%ebx
8048432: 89 ec mov %ebp,%esp
8048434: 5d pop %ebp
8048435: c3 ret

08048438 <main>:
8048438: 55 push %ebp
8048439: 89 e5 mov %esp,%ebp
804843b: 83 ec 08 sub $0x8,%esp
804843e: 83 c4 f8 add $0xfffffff8,%esp
8048441: e8 ce ff ff ff call 8048414 <evil_read_string>
8048446: 50 push %eax integer arg for printf

8048447: 68 bb 84 04 08 push $0x80484bb format string for printf

804844c: e8 eb fe ff ff call 804833c <_init+0x80> call printf

8048451: 89 ec mov %ebp,%esp
8048453: 5d pop %ebp
8048454: c3 ret

Page 39 of 0

Problem 32. (12 points):
This problem tests your understanding of the stack discipline and byte ordering. Here are some notes to
help you work the problem:

� scanf("%s", buf) reads an input string from the standard input stream (stdin) and stores it at
address buf (including the terminating ’\0’ character). It does not check the size of the destination
buffer.

� printf("0x%x", i) prints the integer i in hexadecimal format preceded by “0x”.

� Recall that Linux/x86 machines are Little Endian.

� You will need to know the hex values of the following characters:

Character Hex value Character Hex value

’d’ 0x64 ’v’ 0x76
’r’ 0x72 ’i’ 0x69
’.’ 0x2e ’l’ 0x6c
’e’ 0x65 ’\0’ 0x00

’s’ 0x73

A. Suppose we run this program on a Linux/x86 machine, and give it the string “dr.evil” as input on
stdin.

Here is a template for the stack, showing the locations of buf[0] and buf[1]. Fill in the value of
buf[1] (in hexadecimal) and indicate where ebp points just after scanf returns to evil read string.

|<- buf[0]->|<-buf[1] ->|
+--+

| |
+--+

What is the 4-byte integer (in hex) printed by the printf inside main?

0x_____________________

Page 40 of 0

B. Suppose now we give it the input “dr.evil.lives” (again on a Linux/x86 machine).

(a) List the contents of the following memory locations just after scanf returns to evil read string.
Each answer should be an unsigned 4-byte integer expressed as 8 hex digits.

buf[0] = 0x____________________

buf[3] = 0x____________________

(b) Immediately before the ret instruction at address 0x08048435 executes, what is the value
of the frame pointer register %ebp?

%ebp = 0x____________________

You can use the following template of the stack as scratch space. Note: this does not have to be filled out
to receive full credit.

<- buf[0] -><- buf[1] ->
--+--

| |
--+--

Page 41 of 0

Problem 33. (4 points):
Consider the following fragment of IA32 code from the C standard library:

0x400446e3 <malloc+7>: call 0x400446e8 <malloc+12>
0x400446e8 <malloc+12>: popl %eax

After the popl instruction completes, what hex value does register %eax contain?

Page 42 of 0

This next problem will test your understanding of stack frames. It is based on the following recursive C
function:

int silly(int n, int *p)
{

int val, val2;

if (n > 0)
val2 = silly(n << 1, &val);

else
val = val2 = 0;

*p = val + val2 + n;

return val + val2;
}

This yields the following machine code:

silly:
pushl %ebp
movl %esp,%ebp
subl $20,%esp
pushl %ebx
movl 8(%ebp),%ebx
testl %ebx,%ebx
jle .L3
addl $-8,%esp
leal -4(%ebp),%eax
pushl %eax
leal (%ebx,%ebx),%eax
pushl %eax
call silly
jmp .L4
.p2align 4,,7

.L3:
xorl %eax,%eax
movl %eax,-4(%ebp)

.L4:
movl -4(%ebp),%edx
addl %eax,%edx
movl 12(%ebp),%eax
addl %edx,%ebx
movl %ebx,(%eax)
movl -24(%ebp),%ebx
movl %edx,%eax
movl %ebp,%esp
popl %ebp
ret

Page 43 of 0

Problem 34. (6 points):

A. Is the variable val stored on the stack? If so, at what byte offset (relative to %ebp) is it stored, and
why is it necessary to store it on the stack?

B. Is the variable val2 stored on the stack? If so, at what byte offset (relative to %ebp) is it stored, and
why is it necessary to store it on the stack?

C. What (if anything) is stored at -24(%ebp)? If something is stored there, why is it necessary to store
it?

D. What (if anything) is stored at -8(%ebp)? If something is stored there, why is it necessary to store
it?

Page 44 of 0

The following problem concerns the following, low-quality code:

void foo(int x)
{

int a[3];
char buf[4];
a[0] = 0xF0F1F2F3;
a[1] = x;
gets(buf);
printf("a[0] = 0x%x, a[1] = 0x%x, buf = %s\n", a[0], a[1], buf);

}

In a program containing this code, procedure foo has the following disassembled form on an IA32 machine:

080485d0 <foo>:
80485d0: 55 pushl %ebp
80485d1: 89 e5 movl %esp,%ebp
80485d3: 83 ec 10 subl $0x10,%esp
80485d6: 53 pushl %ebx
80485d7: 8b 45 08 movl 0x8(%ebp),%eax
80485da: c7 45 f4 f3 f2 movl $0xf0f1f2f3,0xfffffff4(%ebp)
80485df: f1 f0
80485e1: 89 45 f8 movl %eax,0xfffffff8(%ebp)
80485e4: 8d 5d f0 leal 0xfffffff0(%ebp),%ebx
80485e7: 53 pushl %ebx
80485e8: e8 b7 fe ff ff call 80484a4 <_init+0x54> # gets
80485ed: 53 pushl %ebx
80485ee: 8b 45 f8 movl 0xfffffff8(%ebp),%eax
80485f1: 50 pushl %eax
80485f2: 8b 45 f4 movl 0xfffffff4(%ebp),%eax
80485f5: 50 pushl %eax
80485f6: 68 ec 90 04 08 pushl $0x80490ec
80485fb: e8 94 fe ff ff call 8048494 <_init+0x44> # printf
8048600: 8b 5d ec movl 0xffffffec(%ebp),%ebx
8048603: 89 ec movl %ebp,%esp
8048605: 5d popl %ebp
8048606: c3 ret
8048607: 90 nop

For the following questions, recall that:

� gets is a standard C library routine.
� IA32 machines are little-endian.
� C strings are null-terminated (i.e., terminated by a character with value 0x00).
� Characters ‘0’ through ‘9’ have ASCII codes 0x30 through 0x39.

Page 45 of 0

Problem 35. (6 points):
Fill in the following table indicating where on the stack the following program values are located. Express these as
decimal offsets (positive or negative) relative to register %ebp:

Program Value Decimal Offset

a

a[2]

x

buf

buf[3]

Saved value of register %ebx

Page 46 of 0

The following problem concerns the following, low-quality code:

void foo(int x)
{

int a[3];
char buf[4];
a[0] = 0xF0F1F2F3;
a[1] = x;
gets(buf);
printf("a[0] = 0x%x, a[1] = 0x%x, buf = %s\n", a[0], a[1], buf);

}

In a program containing this code, procedure foo has the following disassembled form on an IA32 machine:

080485d0 <foo>:
80485d0: 55 pushl %ebp
80485d1: 89 e5 movl %esp,%ebp
80485d3: 83 ec 10 subl $0x10,%esp
80485d6: 53 pushl %ebx
80485d7: 8b 45 08 movl 0x8(%ebp),%eax
80485da: c7 45 f4 f3 f2 movl $0xf0f1f2f3,0xfffffff4(%ebp)
80485df: f1 f0
80485e1: 89 45 f8 movl %eax,0xfffffff8(%ebp)
80485e4: 8d 5d f0 leal 0xfffffff0(%ebp),%ebx
80485e7: 53 pushl %ebx
80485e8: e8 b7 fe ff ff call 80484a4 <_init+0x54> # gets
80485ed: 53 pushl %ebx
80485ee: 8b 45 f8 movl 0xfffffff8(%ebp),%eax
80485f1: 50 pushl %eax
80485f2: 8b 45 f4 movl 0xfffffff4(%ebp),%eax
80485f5: 50 pushl %eax
80485f6: 68 ec 90 04 08 pushl $0x80490ec
80485fb: e8 94 fe ff ff call 8048494 <_init+0x44> # printf
8048600: 8b 5d ec movl 0xffffffec(%ebp),%ebx
8048603: 89 ec movl %ebp,%esp
8048605: 5d popl %ebp
8048606: c3 ret
8048607: 90 nop

For the following questions, recall that:

� gets is a standard C library routine.
� IA32 machines are little-endian.
� C strings are null-terminated (i.e., terminated by a character with value 0x00).
� Characters ‘0’ through ‘9’ have ASCII codes 0x30 through 0x39.

Page 47 of 0

Problem 36. (8 points):
Consider the case where procedure foo is called with argument x equal to 0xE3E2E1E0, and we type
“123456789” in response to gets.

A. Fill in the following table indicating which program values are/are not corrupted by the response from gets,
i.e., their values were altered by some action within the call to gets.

Program Value Corrupted? (Y/N)

a[0]

a[1]

a[2]

x

Saved value of register %ebp

Saved value of register %ebx

B. What will the printf function print for the following:

� a[0] (hexadecimal): ________________________
� a[1] (hexadecimal): ________________________
� buf (ASCII): ________________________

Page 48 of 0

Problem 37. (10 points):
Consider the following C declaration:

struct Node{
char c;
double value;
struct Node* next;
int flag;
struct Node* left;
struct Node* right;

};

typedef struct Node* pNode;

/* NodeTree is an array of N pointers to Node structs */
pNode NodeTree[N];

A. Using the template below (allowing a maximum of 32 bytes), indicate the allocation of data for a Node struct.
Mark off and label the areas for each individual element (there are 6 of them). Cross hatch the parts that are allocated,
but not used (to satisfy alignment).

Assume the Linux alignment rules discussed in Class 9. Clearly indicate the right hand boundary of the data
structure with a vertical line.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
+---+
| |
+---+

Page 49 of 0

B. For each of the four C references below, please indicate which assembly code section (labeled A – F) places the
value of that C reference into register %eax. If no match is found, please write “NONE” next to the C reference.

The initial register-to-variable mapping for each assembly code section is:

%eax = starting address of the NodeTree array
%edx = i

C References:

1. ______ NodeTree[i]->flag

2. ______ NodeTree[i]->left->left->c

3. ______ NodeTree[i]->next->next->flag

4. ______ NodeTree[i]->right->left->left

Linux/IA32 Assembly:

A. sall $2, %edx B. sall $2,%edx
leal (%eax,%edx),%eax leal (%eax,%edx),%eax
movl 16(%eax),%eax movl (%eax),%eax

movl 24(%eax),%eax
movl 20(%eax),%eax
movl 20(%eax),%eax

C: sall $2,%edx D: sall $2,%edx
leal (%eax,%edx),%eax leal (%eax,%edx),%eax
movl 20(%eax),%eax movl (%eax),%eax
movl 20(%eax),%eax movl 16(%eax),%eax
movsbl (%eax),%eax

E: sall $2, %edx F: sall $2, %edx
leal (%eax,%edx),%eax leal (%eax,%edx),%eax
movl (%eax),%eax movl (%eax),%eax
movl 16(%eax),%eax movl 12(%eax),%eax
movl 16(%eax),%eax movl 12(%eax),%eax
movl 20(%eax),%eax movl 16(%eax),%eax

Page 50 of 0

Problem 38. (10 points):
Consider the following incomplete definition of a C struct along with the incomplete code for a function func given
below.

typedef struct node {

_______________ x;

_______________ y;

struct node *next;

struct node *prev;

} node_t;

node_t n;

void func() {

node_t *m;

m = ______________________;

m->y /= 16;

return;
}

When this C code was compiled on an IA-32 machine running Linux, the following assembly code was generated for
function func.

func:
pushl %ebp
movl n+12,%eax
movl 16(%eax),%eax
movl %esp,%ebp
movl %ebp,%esp
shrw $4,8(%eax)
popl %ebp
ret

Given these code fragments, fill in the blanks in the C code given above. Note that there is a unique answer.

The types must be chosen from the following table, assuming the sizes and alignment given.
Type Size (bytes) Alignment (bytes)

char 1 1
short 2 2

unsigned short 2 2
int 4 4

unsigned int 4 4
double 8 4

Page 51 of 0

Performance Optimization

The following problem concerns optimizing a procedure for maximum performance on an Intel Pentium III. Recall
the following performance characteristics of the functional units for this machine:

Operation Latency Issue Time
Integer Add 1 1
Integer Multiply 4 1
Integer Divide 36 36
Floating Point Add 3 1
Floating Point Multiply 5 2
Floating Point Divide 38 38
Load or Store (Cache Hit) 1 1

You’ve just joined a programming team that is trying to develop the world’s fastest factorial routine. Starting with
recursive factorial, they’ve converted the code to use iteration:

int fact(int n)
{

int i;
int result = 1;

for (i = n; i > 0; i--)
result = result * i;

return result;
}

By doing so, they have reduced the number of cycles per element (CPE) for the function from around
���

to around �
(really!). Still, they would like to do better.

Page 52 of 0

Problem 39. (8 points):
One of the programmers heard about loop unrolling. He generated the following code:

int fact_u2(int n)
{

int i;
int result = 1;

for (i = n; i > 0; i-=2) {
result = (result * i) * (i-1);

}

return result;
}

Unfortunately, the team has discovered that this code returns 0 for some values of argument n.

A. For what values of n will fact_u2 and fact return different values?

B. Show how to fix fact_u2 so that its behavior is identical to fact. [Hint: there is a special trick for this
procedure that involves modifying just a single character.]

C. Benchmarking fact_u2 shows no improvement in performance. How would you explain that?

D. You modify the line inside the loop to read:

result = result * (i * (i-1));

To everyone’s astonishment, the measured performance now has a CPE of
�����

. How do you explain this
performance improvement?

Page 53 of 0

Problem 40. (9 points):
The following problem concerns optimizing a procedure for maximum performance on an Intel Pentium III. Recall
the following performance characteristics of the functional units for this machine:

Operation Latency Issue Time
Integer Add 1 1
Integer Multiply 4 1
Integer Divide 36 36
Floating Point Add 3 1
Floating Point Multiply 5 2
Floating Point Divide 38 38
Load or Store (Cache Hit) 1 1

Consider the following two procedures:

Loop 1 Loop 2
int loop1(int *a, int x, int n) int loop2(int *a, int x, int n)
{ {
int y = x*x; int y = x*x;
int i; int i;
for (i = 0; i < n; i++) for (i = 0; i < n; i++)

x = y * a[i]; x = x * a[i];
return x*y; return x*y;

} }

When compiled with GCC, we obtain the following assembly code for the inner loop:

Loop 1 Loop 2
.L21: .L27:

movl %ecx,%eax imull (%esi,%edx,4),%eax
imull (%esi,%edx,4),%eax incl %edx
incl %edx cmpl %ebx,%edx
cmpl %ebx,%edx jl .L27
jl .L21

Running on one of the Fish machines, we find that Loop 1 requires 3.0 clock cycles per iteration, while Loop 2 requires
4.0.

A. Explain how it is that Loop 1 is faster than Loop 2, even though it has one more instruction

B. By using the compiler flag -funroll-loops, we can compile the code to use 4-way loop unrolling. This
speeds up Loop 1. Explain why.

C. Even with loop unrolling, we find the performance of Loop 2 remains the same. Explain why.

Page 54 of 0

Problem 41. (10 points):

Consider the following function for computing the product of an array of � integers. We have unrolled the loop by a
factor of 3.

int aprod(int a[], int n)
{

int i, x, y, z;
int r = 1;
for (i = 0; i < n-2; i+= 3) {

x = a[i]; y = a[i+1]; z = a[i+2];
r = r * x * y * z; // Product computation

}
for (; i < n; i++)

r *= a[i];
return r;

}

For the line labeled Product computation, we can use parentheses to create 5 different associations of the
computation, as follows:

r = ((r * x) * y) * z; // A1
r = (r * (x * y)) * z; // A2
r = r * ((x * y) * z); // A3
r = r * (x * (y * z)); // A4
r = (r * x) * (y * z); // A5

We express the performance of the function in terms of the number of cycles per element (CPE). As described in the
book, this measure assumes the run time, measured in clock cycles, for an array of length � is a function of the form
� ����� , where

�
is the CPE.

We measured the 5 versions of the function on an Intel Pentium III. Recall that the integer multiplication operation on
this machine has a latency of 4 cycles and an issue time of 1 cycle.

Page 55 of 0

(continued)

The following table shows some values of the CPE, and other values missing. The measured CPE values are those
that were actually observed. “Theoretical CPE” means that performance that would be achieved if the only limiting
factor were the latency and issue time of the integer multiplier.

Version Measured CPE Theoretical CPE

A1 4.00

A2 2.67

A3 �
� ����� � ���

A4 1.67

A5 � � ��� ��� ���

Fill in the missing entries. For the missing values of the measured CPE, you can use the values from other versions that
would have the same computational behavior. For the values of the theoretical CPE, you can determine the number of
cycles that would be required for an iteration considering only the latency and issue time of the multiplier, and then
divide by 3.

Page 56 of 0

Problem 42. (5 points):
The following problem concerns basic cache lookups.

� The memory is byte addressable.
� Memory accesses are to 1-byte words (not 4-byte words).
� Physical addresses are 13 bits wide.
� The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 09 1 86 30 3F 10 00 0 99 04 03 48
1 45 1 60 4F E0 23 38 1 00 BC 0B 37
2 EB 0 2F 81 FD 09 0B 0 8F E2 05 BD
3 06 0 3D 94 9B F7 32 1 12 08 7B AD
4 C7 1 06 78 07 C5 05 1 40 67 C2 3B
5 71 1 0B DE 18 4B 6E 0 B0 39 D3 F7
6 91 1 A0 B7 26 2D F0 0 0C 71 40 10
7 46 0 B1 0A 32 0F DE 1 12 C0 88 37

Part 1

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that would be
used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Page 57 of 0

Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex. Indicate
whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

Physical address: 0E34

A. Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 0

B. Physical memory reference

Parameter Value

Byte offset 0x
Cache Index 0x
Cache Tag 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 58 of 0

Problem 43. (5 points):
The following problem concerns basic cache lookups.

� The memory is byte addressable.
� Memory accesses are to 1-byte words (not 4-byte words).
� Physical addresses are 12 bits wide.
� The cache is 4-way set associative, with a 2-byte block size and 32 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

4-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1

0 29 0 34 29 87 0 39 AE 7D 1 68 F2 8B 1 64 38
1 F3 1 0D 8F 3D 1 0C 3A 4A 1 A4 DB D9 1 A5 3C
2 A7 1 E2 04 AB 1 D2 04 E3 0 3C A4 01 0 EE 05
3 3B 0 AC 1F E0 0 B5 70 3B 1 66 95 37 1 49 F3
4 80 1 60 35 2B 0 19 57 49 1 8D 0E 00 0 70 AB
5 EA 1 B4 17 CC 1 67 DB 8A 0 DE AA 18 1 2C D3
6 1C 0 3F A4 01 0 3A C1 F0 0 20 13 7F 1 DF 05
7 0F 0 00 FF AF 1 B1 5F 99 0 AC 96 3A 1 22 79

Part 1

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that would be
used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

11 10 9 8 7 6 5 4 3 2 1 0

Page 59 of 0

Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex. Indicate
whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

Physical address: 3B6

A. Physical address format (one bit per box)
11 10 9 8 7 6 5 4 3 2 1 0

B. Physical memory reference

Parameter Value

Cache Offset (CO) 0x
Cache Index (CI) 0x
Cache Tag (CT) 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 60 of 0

Problem 44. (8 points):
You are writing a new 3D game that you hope will earn you fame and fortune. You are currently working on a function
to blank the screen buffer before drawing the next frame. The screen you are working with is a 640x480 array of pixels.
The machine you are working on has a 64 KB direct mapped cache with 4 byte lines. The C structures you are using
are:

struct pixel {
char r;
char g;
char b;
char a;

};

struct pixel buffer[480][640];
register int i, j;
register char *cptr;
register int *iptr;

Assume:
� sizeof(char) = 1

� sizeof(int) = 4

� buffer begins at memory address 0
� The cache is initially empty.
� The only memory accesses are to the entries of the array buffer. Variables i, j, cptr, and iptr are stored

in registers.

Page 61 of 0

A. What percentage of the writes in the following code will miss in the cache?

for (j=0; j < 640; j++) {
for (i=0; i < 480; i++){

buffer[i][j].r = 0;
buffer[i][j].g = 0;
buffer[i][j].b = 0;
buffer[i][j].a = 0;

}
}

Miss rate for writes to buffer: _______ %

B. What percentage of the writes in the following code will miss in the cache?

char *cptr;
cptr = (char *) buffer;
for (; cptr < (((char *) buffer) + 640 * 480 * 4); cptr++)

*cptr = 0;

Miss rate for writes to buffer: _______ %

C. What percentage of the writes in the following code will miss in the cache?

int *iptr;
iptr = (int *) buffer;
for (; iptr < (buffer + 640 * 480); iptr++)

*iptr = 0;

Miss rate for writes to buffer: _______ %

D. Which code (A, B, or C) should be the fastest? _______

Page 62 of 0

Problem 45. (6 points):
The following table gives the parameters for a number of different caches, where � is the number of physical address
bits,

�
is the cache size (number of data bytes),

�
is the block size in bytes, and � is the number of lines per set. For

each cache, determine the number of cache sets (�), tag bits (�), set index bits (�), and block offset bits (�).

Cache � � � � � � � �

1. 32 1024 4 4

2. 32 1024 4 256

3. 32 1024 8 1

4. 32 1024 8 128

5. 32 1024 32 1

6. 32 1024 32 4

Page 63 of 0

Problem 46. (7 points):
After watching the presidential election you decide to start a business in developing software for electronic voting.
The software will run on a machine with a 1024-byte direct-mapped data cache with 64 byte blocks.
You are implementing a prototype of your software that assumes that there are 7 candidates. The C-structures you are
using are:

struct vote {
int candidates[7];
int valid;

};

struct vote vote_array[16][16];
register int i, j, k;

You have to decide between two alternative implementations of the routine that initializes the array vote_array.
You want to choose the one with the better cache performance.
You can assume:

� sizeof(int) = 4

� vote_array begins at memory address 0
� The cache is initially empty.
� The only memory accesses are to the entries of the array vote_array. Variables i, j and k are stored in

registers.

A. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

vote_array[i][j].valid=0;
}

}

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

for (k=0; k<7; k++) {
vote_array[i][j].candidates[k] = 0;

}
}

}

Total number of misses in the first loop: _______ %

Total number of misses in the second loop: _______ %

Overall miss rate for writes to vote_array: _______ %

Page 64 of 0

B. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

for (k=0; k<7; k++) {
vote_array[i][j].candidates[k] = 0;

}
vote_array[i][j].valid=0;

}
}

Miss rate for writes to vote_array: _______ %

Page 65 of 0

Problem 47. (8 points):
A bitmap image is composed of pixels. Each pixel in the image is represented as four values: three for the primary
colors(red, green and blue - RGB) and one for the transparency information defined as an alpha channel.

In this problem, you will compare the performance of direct mapped and � -way associative caches for a square bitmap
image initialization. Both caches have a size of

� � � bytes. The direct mapped cache has � -byte blocks while the � -way
associative cache has � -byte blocks.

You are given the following definitions

typedef struct{
unsigned char r;
unsigned char g;
unsigned char b;
unsigned char a;

}pixel_t;

pixel_t pixel[16][16];
register int i, j;

Also assume that
� sizeof(unsigned char) = 1

� pixel begins at memory address 0
� Both caches are initially empty
� The array is stored in row-major order
� Variables i,j are stored in registers and any access to these variables does not cause a cache miss

A. What fraction of the writes in the following code will result in a miss in the direct mapped cache?

for (i = 0; i < 16; i ++){
for (j = 0; j < 16; j ++){

pixel[i][j].r = 0;
pixel[i][j].g = 0;
pixel[i][j].b = 0;
pixel[i][j].a = 0;

}
}

Miss rate for writes to pixel:____________%

B. Using code in part A, what fraction of the writes will result in a miss in the 4-way associative cache?

Miss rate for writes to pixel: ____________ %

Page 66 of 0

C. What fraction of the writes in the following code will result in a miss in the direct mapped cache?

for (i = 0; i < 16; i ++){
for (j = 0; j < 16; j ++){

pixel[j][i].r = 0;
pixel[j][i].g = 0;
pixel[j][i].b = 0;
pixel[j][i].a = 0;

}
}

Miss rate for writes to pixel:____________%

D. Using code in part C, what fraction of the writes will result in a miss in the 4-way associative cache?

Miss rate for writes to pixel:____________%

Page 67 of 0

Problem 48. (12 points):
3M decides to make Post-Its by printing yellow squares on white pieces of paper. As part of the printing process, they
need to set the CMYK (cyan, magenta, yellow, black) value for every point in the square. 3M hires you to determine
the efficiency of the following algorithms on a machine with a 2048-byte direct-mapped data cache with 32 byte
blocks.
You are given the following definitions:

struct point_color {
int c;
int m;
int y;
int k;

};

struct point_color square[16][16];
register int i, j;

Assume:
� sizeof(int) = 4

� square begins at memory address 0
� The cache is initially empty.
� The only memory accesses are to the entries of the array square. Variables i and j are stored in registers.

A. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

square[i][j].c = 0;
square[i][j].m = 0;
square[i][j].y = 1;
square[i][j].k = 0;

}
}

Miss rate for writes to square: _______ %

Page 68 of 0

B. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

square[j][i].c = 0;
square[j][i].m = 0;
square[j][i].y = 1;
square[j][i].k = 0;

}
}

Miss rate for writes to square: _______ %

C. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

square[i][j].y = 1;
}

}
for (i=0; i<16; i++) {

for (j=0; j<16; j++) {
square[i][j].c = 0;
square[i][j].m = 0;
square[i][j].k = 0;

}
}

Miss rate for writes to square: _______ %

Page 69 of 0

Problem 49. (10 points):
After a stressful semester you suddenly realize that you haven’t bought a single christmas present yet. Fortunately,
you see that one of the big electronic stores has CD’s on sale. You don’t have much time to decide which CD will
make the best presents for which friend, so you decide to automatize the decision process. For that, you use a database
containing an entry for each of your friends. It is is implemented as an � � � matrix using a data structure person.
You add to this data structure a field for each CD that you consider:

struct person{

char name[16];

int age;
int male;

short nsync;
short britney_spears;
short dolly_parton;
short garth_brooks;

}

struct person db[8][8];
register int i, j;

Page 70 of 0

Part 1

After thinking for a while you come up with the following smart routine that finds the ideal present for everyone.

void generate_presents(){

for (j=0; j<8; j++){
for (i=0; i<8; i++) {

db[i][j].nsync=0;
db[i][j].britney_spears=0;
db[i][j].garth_brooks=0;
db[i][j].dolly_parton=0;

}
}

for (j=0; j<8; j++){
for (i=0; i<8; i++) {

if(db[i][j].age < 30){
if(db[i][j].male)

db[i][j].britney_spears = 1;
else db[i][j].nsync = 1;

}
else{

if(db[i][j].male)
db[i][j].dolly_parton =1;

else db[i][j].garth_brooks = 1;
}

}
}

}

Of course, runtime is important in this time-critical application, so you decide to analyze the cache performance of
your routine. You assume that

� your machine has a 512-byte direct-mapped data cache with 64 byte blocks.
� db begins at memory address 0
� The cache is initially empty.
� The only memory accesses are to the entries of the array db. Variables i, and j are stored in registers.

Answer the following questions:

A. What is the total number of read and write accesses? _______.

B. What is the total number of read and write accesses that miss in the cache? _______ .

C. So the fraction of all accesses that miss in the cache is: _______.

Page 71 of 0

Part 2

Then you consider the following alternative implementation of the same algorithm:

void generate_presents(){

for (i=0; i<8; i++){
for (j=0; j<8; j++) {

if(db[i][j].age < 30)
if(db[i][j].male) {

db[i][j].nsync=0;
db[i][j].britney_spears=1;
db[i][j].garth_brooks=0;
db[i][j].dolly_parton=0;

}

else
db[i][j].nsync=1;
db[i][j].britney_spears=0;
db[i][j].garth_brooks=0;
db[i][j].dolly_parton=0;

}
}

else{
if(db[i][j].male) {

db[i][j].nsync=0;
db[i][j].britney_spears=0;
db[i][j].garth_brooks=0;
db[i][j].dolly_parton=1;

}

else{
db[i][j].nsync=0;
db[i][j].britney_spears=0;
db[i][j].garth_brooks=1;
db[i][j].dolly_parton=0;

}
}

}
}

}

Making the same assumptions as in Part 1, answer the following questions.

Page 72 of 0

A. What is the total number of read and write accesses? _______

B. What is the total number of read and write accesses that miss in the cache? _______

C. So the fraction of all accesses that miss in the cache is: _______.

Page 73 of 0

Problem 50. (14 points):
Consider a direct mapped cache of size 64K with block size of 16 bytes. Furthermore, the cache is write-back
and write-allocate. You will calculate the miss rate for the following code using this cache. Remember that
sizeof(int) == 4. Assume that the cache starts empty and that local variables and computations take place
completely within the registers and do not spill onto the stack.

A. Now consider the following code to copy one matrix to another. Assume that the src matrix starts at address 0
and that the dest matrix follows immediately follows it.

void copy_matrix(int dest[ROWS][COLS], int src[ROWS][COLS])
{

int i, j;

for (i=0; i<ROWS; i++) {
for (j=0; j<COLS; j++) {

dest[i][j] = src[i][j];
}

}
}

1. What is the cache miss rate if ROWS = 128 and COLS = 128?
Miss rate = _________%

2. What is the cache miss rate if ROWS = 128 and COLS = 192?
Miss rate = _________%

3. What is the cache miss rate if ROWS = 128 and COLS = 256?
Miss rate = _________%

Page 74 of 0

B. Now consider the following two implementations of a horizontal flip and copy of the matrix. Again assume that
the src matrix starts at address 0 and that the dest matrix follows immediately follows it.

void copy_n_flip_matrix1(int dest[ROWS][COLS], int src[ROWS][COLS])
{

int i, j;

for (i=0; i<ROWS; i++) {
for (j=0; j<COLS; j++) {

dest[i][COLS - 1 - j] = src[i][j];
}

}
}

1. What is the cache miss rate if ROWS = 128 and COLS = 128?
Miss rate = _________%

2. What is the cache miss rate if ROWS = 128 and COLS = 192?
Miss rate = _________%

void copy_n_flip_matrix2(int dest[ROWS][COLS], int src[ROWS][COLS])
{

int i, j;

for (j=0; j<COLS; j++) {
for (i=0; i<ROWS; i++) {

dest[i][COLS - 1 - j] = src[i][j];
}

}
}

1. What is the cache miss rate if ROWS = 128 and COLS = 128?
Miss rate = _________%

2. What is the cache miss rate if ROWS = 192 and COLS = 128?
Miss rate = _________%

Page 75 of 0

Problem 51. (12 points):
This problem tests your understanding of cache conflict misses. Consider the following matrix transpose routine

typedef int array[2][2];

void transpose(array dst, array src) {
int i, j;

for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {

dst[j][i] = src[i][j];
}

}
}

running on a hypothetical machine with the following properties:
� sizeof(int) == 4.
� The src array starts at address 0 and the dst array starts at address 16 (decimal).
� There is a single L1 cache that is direct mapped and write-allocate, with a block size of 8 bytes.
� Accesses to the src and dst arrays are the only sources of read and write misses, respectively.

A. Suppose the cache has a total size of 16 data bytes (i.e., the block size times the number of sets is 16
bytes) and that the cache is initially empty. Then for each row and col, indicate whether each access to
src[row][col] and dst[row][col] is a hit (h) or a miss (m). For example, reading src[0][0] is a
miss and writing dst[0][0] is also a miss.

dst array

col 0 col 1

row 0 m

row 1

src array

col 0 col 1

row 0 m

row 1

B. Repeat part A for a cache with a total size of 32 data bytes.

dst array

col 0 col 1

row 0 m

row 1

src array

col 0 col 1

row 0 m

row 1

Page 76 of 0

Problem 52. (8 points):
This problem tests your understanding of conflict misses. Consider the following transpose routine

typedef int array[2][2];

void transpose(array dst, array src) {
int i, j;

for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {

dst[i][j] = src[j][i];
}

}
}

running on a hypothetical machine with the following properties:
� sizeof(int) == 4.
� The src array starts at address 0 and the dst array starts at address 16 (decimal).
� There is a single L1 cache that is direct mapped and write-allocate, with a block size of 8 bytes.
� Accesses to the src and dst arrays are the only sources of read and write misses, respectively.

A. Suppose the cache has a total size of 16 data bytes (i.e., the block size times the number of sets is 16
bytes) and that the cache is initially empty. Then for each row and col, indicate whether each access to
src[row][col] and dst[row][col] is a hit (h) or a miss (m). For example, reading src[0][0] is a
miss and writing dst[0][0] is also a miss.

dst array

col 0 col 1

row 0 m

row 1

src array

col 0 col 1

row 0 m

row 1

B. Repeat part A for a cache with a total size of 32 data bytes.

dst array

col 0 col 1

row 0 m

row 1

src array

col 0 col 1

row 0 m

row 1

Page 77 of 0

Problem 53. (5 points):
Consider the C program below. (For space reasons, we are not checking error return codes, so assume that all functions
return normally.)

main() {

if (fork() == 0) {
if (fork() == 0) {

printf("3");
}
else {

pid_t pid; int status;
if ((pid = wait(&status)) > 0) {

printf("4");
}

}
}
else {
if (fork() == 0) {

printf("1");
exit(0);

}
printf("2");

}

printf("0");

return 0;
}

Out of the 5 outputs listed below, circle only the valid outputs of this program. Assume that all processes run to normal
completion.

A. 2030401 B. 1234000 C. 2300140

D. 2034012 E. 3200410

Page 78 of 0

Problem 54. (4 points):
Consider the following C program. (For space reasons, we are not checking error return codes, so assume that all
functions return normally.)

pid_t pid;

void handler1(int sig) {
printf("zip");
fflush(stdout); /* Flushes the printed string to stdout */
kill(pid, SIGUSR1);

}

void handler2(int sig) {
printf("zap");
exit(0);

}

main() {
signal(SIGUSR1, handler1);
if ((pid = fork()) == 0) {
signal(SIGUSR1, handler2);
kill(getppid(), SIGUSR1);
while(1) {};

}
else {
pid_t p; int status;
if ((p = wait(&status)) > 0) {

printf("zoom");
}

}
}

What is the output string that this program prints?

————————————————

Page 79 of 0

Problem 55. (10 points):
Consider the C program below. (For space reasons, we are not checking error return codes, so assume that all functions
return normally.)

int main () {
if (fork() == 0) {

if (fork() == 0) {
printf("3");

}
else {

pid_t pid; int status;
if ((pid = wait(&status)) > 0) {

printf("4");
}

}
}
else {

printf("2");
exit(0);

}
printf("0");
return 0;

}

For each of the following strings, circle whether (Y) or not (N) this string is a possible output of the program.

A. 32040 Y N

B. 34002 Y N

C. 30402 Y N

D. 23040 Y N

E. 40302 Y N

Page 80 of 0

Problem 56. (5 points):
Consider the following C program:

#include <sys/wait.h>

main() {
int status;

printf("%s\n", "Hello");
printf("%d\n", !fork());

if(wait(&status) != -1)
printf("%d\n", WEXITSTATUS(status));

printf("%s\n", "Bye");

exit(2);
}

Recall the following:
� Function fork returns 0 to the child process and the child’s process Id to the parent.
� Function wait returns -1 when there is an error, e.g., when the executing process has no child.
� Macro WEXITSTATUS extracts the exit status of the terminating process.

What is a valid output of this program? Hint: there are several correct solutions.

Page 81 of 0

Problem 57. (8 points):
This problem tests your understanding of exceptional control flow in C programs.
For problems A-C, indicate how many “hello” output lines the program would print.
Caution: Don’t overlook the printf function in main.

Problem A

void doit() {
fork();
fork();
printf("hello\n");
return;

}

int main() {
doit();
printf("hello\n");
exit(0);

}

Answer: _____ output lines.

Problem B

void doit() {
if (fork() == 0) {
fork();
printf("hello\n");
exit(0);

}
return;

}

int main() {
doit();
printf("hello\n");
exit(0);

}

Answer: _____ output lines.

Problem C

void doit() {
if (fork() == 0) {
fork();
printf("hello\n");
return;

}
return;

}

int main() {
doit();
printf("hello\n");
exit(0);

}

Answer: _____ output lines.

Page 82 of 0

For problem E, indicate the value of the counter variable that the program would print.

Problem D

int counter = 1;

int main() {

if (fork() == 0) {
counter--;
exit(0);

}
else {
wait(NULL);
counter++;
printf("counter = %d\n", counter);

}
exit(0);

}

Answer: counter = _____.

Page 83 of 0

Problem 58. (16 points):
This problem tests your understanding of exceptional control flow in C programs. Assume we are running code on a
Unix machine. The following problems all concern the value of the variable counter.

Part I (6 points)

int counter = 0;

int main()
{

int i;

for (i = 0; i < 2; i ++){
fork();
counter ++;
printf("counter = %d\n", counter);

}

printf("counter = %d\n", counter);
return 0;

}

A. How many times would the value of counter be printed: ____________

B. What is the value of counter printed in the first line? ____________

C. What is the value of counter printed in the last line? ____________

Page 84 of 0

Part II (6 points)

pid_t pid;
int counter = 0;

void handler1(int sig)
{

counter ++;
printf("counter = %d\n", counter);
fflush(stdout); /* Flushes the printed string to stdout */
kill(pid, SIGUSR1);

}

void handler2(int sig)
{

counter += 3;
printf("counter = %d\n", counter);
exit(0);

}

main() {
signal(SIGUSR1, handler1);
if ((pid = fork()) == 0) {

signal(SIGUSR1, handler2);
kill(getppid(), SIGUSR1);
while(1) {};

}
else {

pid_t p; int status;
if ((p = wait(&status)) > 0) {

counter += 2;
printf("counter = %d\n", counter);

}
}

}

What is the output of this program?

Page 85 of 0

Part III (4 points)

int counter = 0;

void handler(int sig)
{

counter ++;
}

int main()
{

int i;

signal(SIGCHLD, handler);

for (i = 0; i < 5; i ++){
if (fork() == 0){

exit(0);
}

}

/* wait for all children to die */
while (wait(NULL) != -1);

printf("counter = %d\n", counter);
return 0;

}

A. Does the program output the same value of counter every time we run it? Yes No

B. If the answer to A is Yes, indicate the value of the counter variable. Otherwise, list all possible values of the
counter variable.

Answer: counter = __________________

Page 86 of 0

Problem 59. (4 points):
Consider the following C program. (For space reasons, we are not checking error return codes. You can assume that
all functions return normally.)

int val = 10;

void handler(sig)
{

val += 5;
return;

}

int main()
{

int pid;

signal(SIGCHLD, handler);
if ((pid = fork()) == 0) {

val -= 3;
exit(0);

}
waitpid(pid, NULL, 0);
printf("val = %d\n", val);
exit(0);

}

What is the output of this program? val = ____________

Page 87 of 0

Process control

The next problem concerns the following four versions of the tfgets routine, a timeout version of the Unix fgets
routine.

The tfgets routine waits for the user to type in a string and hit the return key. If the user enters the string within 5
seconds, the tfgets returns normally with a pointer to the string. Otherwise, the routine “times out” and returns a
NULL string.

tfgets: Version A

void handler(int sig) {
siglongjmp(env, 1);

}

char *tfgets(char *s, int size, FILE *stream) {
pid_t pid;
signal(SIGCHLD, handler);

if (!sigsetjmp(env, 1)) {
pid = fork();
if (pid == 0) {

return fgets(s, size, stream);
}
else {

sleep(5);
kill(pid, SIGKILL);
wait(NULL);
return NULL;

}
}
else {
wait(NULL);
exit(0);

}
}

Page 88 of 0

tfgets: Version B

void handler(int sig) {
wait(NULL);
siglongjmp(env,1);

}

char *tfgets(char *s, int size, FILE *stream) {
pid_t pid;

signal(SIGUSR2, handler);
if (sigsetjmp(env, 1) != 0)
return NULL;

if ((pid = fork()) == 0) {
sleep(5);
kill(getppid(), SIGUSR2);
exit(0);

}
fgets(s, size, stream);
kill(pid, SIGKILL);
wait(NULL);
return s;

}

tfgets: Version C

void handler(int sig) {
wait(NULL);
siglongjmp(env, 1);

}

char *
tfgets(char *s, int size, FILE *stream) {

pid_t pid;
str = NULL;
signal(SIGCHLD, handler);

if ((pid = fork()) == 0) {
sleep(5);
exit(0);

}
else {
if (sigsetjmp(env, 1) == 0) {

str = fgets(s, size, stream);
kill(pid, SIGKILL);
pause();

}
return str;

}
}

Page 89 of 0

tfgets: Version D

void handler(int sig) {
wait(NULL);
siglongjmp(env, 1);

}

char *
tfgets(char *s, int size, FILE *stream) {

pid_t pid;
str = NULL;
signal(SIGCHLD, handler);

if ((pid = fork()) == 0) {
sleep(5);
return NULL;

}
else {
if (sigsetjmp(env, 1) == 0) {

str = fgets(s, size, stream);
kill(pid, SIGKILL);
pause();

}
return str;

}
}

Page 90 of 0

Problem 60. (8 points):
This problem concerns the four versions of tfgets from the previous pages. Some of them are correct, and others
are flawed because the author didn’t understand basic concepts of concurrency and signaling.
Circle the versions that are correct, in the sense that they return the input string if typed within 5 seconds, timeout after
5 seconds by returning NULL, and correctly reap their terminated children.

Version A Version B Version C Version D

Note: The pause function sleeps until a signal is received and then returns.

Page 91 of 0

Problem 61. (10 points):
The following problem concerns the way virtual addresses are translated into physical addresses.

� The memory is byte addressable.
� Memory accesses are to 1-byte words (not 4-byte words).
� Virtual addresses are 16 bits wide.
� Physical addresses are 14 bits wide.
� The page size is 1024 bytes.
� The TLB is 4-way set associative with 16 total entries.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB and the page table for the
first 32 pages are as follows:

TLB
Index Tag PPN Valid

0 8 7 1
F 6 1
0 3 0
1 F 1

1 1 E 1
2 7 0
7 3 0
B 1 1

2 0 0 0
C 1 0
F 8 1
7 6 1

3 8 4 0
3 5 0
0 D 1
2 9 0

Page Table
VPN PPN Valid VPN PPN Valid

00 2 0 10 1 1
01 5 1 11 3 0
02 7 1 12 9 0
03 9 0 13 7 1
04 F 1 14 D 1
05 3 1 15 5 0
06 B 0 16 E 1
07 D 1 17 6 0
08 7 1 18 1 0
09 C 0 19 0 1
0A 3 0 1A 8 1
0B 1 1 1B C 0
0C 0 1 1C 0 0
0D D 0 1D 2 1
0E 0 0 1E 7 0
0F 1 0 1F 3 0

Page 92 of 0

Part 1

A. The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if they exist)
that would be used to determine the following: (If a field doesn’t exist, don’t draw it on the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index
TLBT The TLB tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that would
be used to determine the following:

PPO The physical page offset
PPN The physical page number

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 93 of 0

Part 2

For the given virtual addresses, indicate the TLB entry accessed and the physical address. Indicate whether the TLB
misses and whether a page fault occurs.

If there is a page fault, enter “-” for “PPN” and leave part C blank.

Virtual address: 2F09

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

C. Physical address format (one bit per box)
13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address: 0C53

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

C. Physical address format (one bit per box)
13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 94 of 0

Problem 62. (10 points):
The following problem concerns the way virtual addresses are translated into physical addresses.

� The memory is byte addressable.
� Memory accesses are to 4-byte words.
� Virtual addresses are 20 bits wide.
� Physical addresses are 16 bits wide.
� The page size is 4096 bytes.
� The TLB is 4-way set associative with 16 total entries.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB and the page table for the
first 32 pages are as follows:

TLB
Index Tag PPN Valid

0 03 B 1
07 6 0
28 3 1
01 F 0

1 31 0 1
12 3 0
07 E 1
0B 1 1

2 2A A 0
11 1 0
1F 8 1
07 5 1

3 07 3 1
3F F 0
10 D 0
32 0 0

Page Table
VPN PPN Valid VPN PPN Valid

00 7 1 10 6 0
01 8 1 11 7 0
02 9 1 12 8 0
03 A 1 13 3 0
04 6 0 14 D 0
05 3 0 15 B 0
06 1 0 16 9 0
07 8 0 17 6 0
08 2 0 18 C 1
09 3 0 19 4 1
0A 1 1 1A F 0
0B 6 1 1B 2 1
0C A 1 1C 0 0
0D D 0 1D E 1
0E E 0 1E 5 1
0F D 1 1F 3 1

Page 95 of 0

A. Part 1

(a) The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if
they exist) that would be used to determine the following: (If a field doesn’t exist, don’t draw it on the
diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index
TLBT The TLB tag

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that
would be used to determine the following:

PPO The physical page offset
PPN The physical page number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 96 of 0

B. Part 2

For the given virtual addresses, indicate the TLB entry accessed and the physical address. Indicate whether the
TLB misses and whether a page fault occurs.

If there is a page fault, enter “-” for “PPN” and leave part C blank.

Virtual address: 7E37C

(a) Virtual address format (one bit per box)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) Address translation
Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

(c) Physical address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address: 16A48

(a) Virtual address format (one bit per box)
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) Address translation
Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

(c) Physical address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 97 of 0

Problem 63. (12 points):
The following problem concerns the way virtual addresses are translated into physical addresses.

� The memory is byte addressable.
� Memory accesses are to 1-byte words (not 4-byte words).
� Virtual addresses are 16 bits wide.
� Physical addresses are 13 bits wide.
� The page size is 512 bytes.
� The TLB is 8-way set associative with 16 total entries.
� The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB, the page table for the first
32 pages, and the cache are as follows:

TLB
Index Tag PPN Valid

0 09 4 1
12 2 1
10 0 1
08 5 1
05 7 1
13 1 0
10 3 0
18 3 0

1 04 1 0
0C 1 0
12 0 0
08 1 0
06 7 0
03 1 0
07 5 0
02 2 0

Page Table
VPN PPN Valid VPN PPN Valid

00 6 1 10 0 1
01 5 0 11 5 0
02 3 1 12 2 1
03 4 1 13 4 0
04 2 0 14 6 0
05 7 1 15 2 0
06 1 0 16 4 0
07 3 0 17 6 0
08 5 1 18 1 1
09 4 0 19 2 0
0A 3 0 1A 5 0
0B 2 0 1B 7 0
0C 5 0 1C 6 0
0D 6 0 1D 2 0
0E 1 1 1E 3 0
0F 0 0 1F 1 0

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 19 1 99 11 23 11 00 0 99 11 23 11
1 15 0 4F 22 EC 11 2F 1 55 59 0B 41
2 1B 1 00 02 04 08 0B 1 01 03 05 07
3 06 0 84 06 B2 9C 12 0 84 06 B2 9C
4 07 0 43 6D 8F 09 05 0 43 6D 8F 09
5 0D 1 36 32 00 78 1E 1 A1 B2 C4 DE
6 11 0 A2 37 68 31 00 1 BB 77 33 00
7 16 1 11 C2 11 33 1E 1 00 C0 0F 00

Page 98 of 0

Part 1

A. The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if they exist)
that would be used to determine the following: (If a field doesn’t exist, don’t draw it on the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index
TLBT The TLB tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that would
be used to determine the following:

PPO The physical page offset
PPN The physical page number
CO The block offset within the cache line
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Page 99 of 0

Part 2

For the given virtual address, indicate the TLB entry accessed, the physical address, and the cache byte value returned
in hex. Indicate whether the TLB misses, whether a page fault occurs, and whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”. If there is a page fault, enter “-” for “PPN” and leave
parts C and D blank.

Virtual address: 1DDE

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

C. Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset 0x
Cache Index 0x
Cache Tag 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 100 of 0

Dynamic storage allocation

The following problem concerns dynamic storage allocation.

Consider an allocator that uses an implicit free list. The layout of each allocated and free memory block is as follows:

31 2 1 0

Header | Block Size (bytes) | |
|____________________________|_____|
| |
| |
| |
| |
| |
|__________________________________|

Footer | Block Size (bytes) | |
|____________________________|_____|

Each memory block, either allocated or free, has a size that is a multiple of eight bytes. Thus, only the 29 higher order
bits in the header and footer are needed to record block size, which includes the header and footer. The usage of the
remaining 3 lower order bits is as follows:

� bit 0 indicates the use of the current block: 1 for allocated, 0 for free.
� bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.
� bit 2 is unused and is always set to be 0.

Page 101 of 0

Problem 64. (8 points):
Given the contents of the heap shown on the left, show the new contents of the heap (in the right table) after a call
to free(0x400b010) is executed. Your answers should be given as hex values. Note that the address grows from
bottom up. Assume that the allocator uses immediate coalescing, that is, adjacent free blocks are merged immediately
each time a block is freed.

Address

0x400b028 0x00000012

0x400b024 0x400b611c

0x400b020 0x400b512c

0x400b01c 0x00000012

0x400b018 0x00000013

0x400b014 0x400b511c

0x400b010 0x400b601c

0x400b00c 0x00000013

0x400b008 0x00000013

0x400b004 0x400b601c

0x400b000 0x400b511c

0x400affc 0x00000013

Address

0x400b028

0x400b024 0x400b611c

0x400b020 0x400b512c

0x400b01c

0x400b018

0x400b014 0x400b511c

0x400b010 0x400b601c

0x400b00c

0x400b008

0x400b004 0x400b601c

0x400b000 0x400b511c

0x400affc

Page 102 of 0

Problem 65. (10 points):
Consider an allocator that uses an implicit free list. Each memory block, either allocated or free, has a size that is a
multiple of eight bytes. Thus, only the 29 higher order bits in the header and footer are needed to record block size,
which includes the header and footer and is represented in units of bytes. The usage of the remaining 3 lower order
bits is as follows:

� bit 0 indicates the use of the current block: 1 for allocated, 0 for free.
� bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.
� bit 2 is unused and is always set to be 0.

Five helper routines are defined to facilitate the implementation of free(void *p). The functionality of each
routine is explained in the comment above the function definition. Fill in the body of the helper routines the code
section label that implement the corresponding functionality correctly.

/* given a pointer p to an allocated block, i.e., p is a
pointer returned by some previous malloc()/realloc() call;
returns the pointer to the header of the block*/

void * header(void* p)
{

void *ptr;

_______;
return ptr;

}

A. ptr=p-1
B. ptr=(void *)((int *)p-1)
C. ptr=(void *)((int *)p-4)

/* given a pointer to a valid block header or footer,
returns the size of the block */

int size(void *hp)
{

int result;

_______;
return result;

}

A. result=(*hp)&(˜7)
B. result=((*(char *)hp)&(˜5))<<2
C. result=(*(int *)hp)&(˜7)

Page 103 of 0

/* given a pointer p to an allocated block,i.e. p is
a pointer returned by some previous malloc()/realloc() call;
returns the pointer to the footer of the block*/

void * footer(void *p)
{

void *ptr;

_______;
return ptr;

}

A. ptr=p+size(header(p))-8
B. ptr=p+size(header(p))-4
C. ptr=(int *)p+size(header(p))-2

/* given a pointer to a valid block header or footer,
returns the usage of the currect block,
1 for allocated, 0 for free */

int allocated(void *hp)
{

int result;

______;
return result;

}

A. result=(*(int *)hp)&1
B. result=(*(int *hp)&0
C. result=(*(int *)hp)|1

/* given a pointer to a valid block header,
returns the pointer to the header of previous block in memory */

void * prev(void *hp)
{

void *ptr;

______;
return ptr;

}

A. ptr = hp - size(hp)
B. ptr = hp - size(hp-4)
C. ptr = hp - size(hp-4) + 4

Page 104 of 0

