15-213, Fall 2006
Malloc Lab: Writing a Dynamic Storage Allocator
Assigned: Fri, Oct. 27, Due: Fri, Nov. 10, 11:59PM
Last Possible Time to Turn in: Sun, Nov. 12, 11:59PM

Donnie H Kim dhj ki m@s. cmu. edu)is the lead person for this assignment.

1 Introduction

In this lab you will be writing a dynamic storage allocator 0 programs, that is, your own version of
themal | oc,free,real |l oc, andcal | oc functions. You are encouraged to explore the design space
creatively and implement an allocator that is correct, igfficand fast.

2 Logistics

This is an individual project. You should do this lab on on¢haf class saltwater fish machines. As always,
clarifications and corrections will be posted to the Autatabssage board.

3 Hand Out Instructions

Start by downloadingral | ocl ab- handout . t ar from Autolab to a protected directory in which you
plan to do your work. Then give the commaindr xvf mal | ocl ab- handout . t ar . This will cause
a number of files to be unpacked into the directory.

The only file you will be modifying and turning infsn ¢, which contains your solutiothendr i ver . c
program is a driver program that allows you to evaluate thopmance of your solution. Use the command
mek e to generate the driver code and run it with the commahddr i ver .

4 How to Work on the Lab

Your dynamic storage allocator will consist of the follogifunctions, which are declared mm h and
defined innm c.

i nt mm.init(void);

void *mal | oc(size t size);

void free(void *ptr);

void *realloc(void *ptr, size t size);
void *calloc (size_t nnenb, size_t size);
void mm heapcheck(void);

Thermm c file we have given you implements nothing. However, we hase ptovided you with a program
calledmm nai ve. ¢, which implements everything correctly, but naively. Wedalso provided you with
a working version of the implicit list allocator describedyiour textbook, calledm i nplicit. c.

You may use either of these examples as starting points far g@nnmm c file. Implement the functions
(and possibly define other privagé at i ¢ functions), so that they obey the following semantics:

e Mmi ni t: Performs any necessary initializations, such as allogdkia initial heap area. The return
value should be -1 if there was a problem in performing thigaization, 0 otherwise.

Every time the driver executes a new trace, it resets youp bedghe empty heap by calling your
nmi ni t function.

e mal | oc: Thenal | oc routine returns a pointer to an allocated block payload déastsi ze
bytes. The entire allocated block should lie within the hesgpon and should not overlap with any
other allocated chunk.

Since the standard C library i(bc) malloc always returns payload pointers that are alignel to
bytes, your malloc implementation should do likewise anabsts return 8-byte aligned pointers.

e free: Thefree routine frees the block pointed to Ipt r. It returns nothing. This routine is
only guaranteed to work when the passed poinper § was returned by an earlier call tml | oc,
cal | oc, orreal | oc and has not yet been freefd: ee(NULL) has no effect.

e reall oc: Thereal |l oc routine returns a pointer to an allocated region of at Ieaste bytes
with the following constraints.

— if pt r is NULL, the call is equivalent toral | oc(si ze) ;
— if si ze is equal to zero, the call is equivalentftoee(pt r) , and should return NULL,;

— if ptr is not NULL, it must have been returned by an earlier cattéb | oc orr eal | oc, and
not yet have been freed. The callrteal | oc changes the size of the memory block pointed to
by pt r (theold blocK to si ze bytes and returns the address of the new block. Notice that th
address of the new block might be the same as the old blockmoght be different, depending

on your implementation, the amount of internal fragmeatain the old block, and the size of
ther eal | oc request.

The contents of the new block are the same as those of tha oldblock, up to the minimum of

the old and new sizes. Everything else is uninitialized. é&@mple, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the neakldre identical to the first 8
bytes of the old block and the last 4 bytes are uninitialiZgidhilarly, if the old block is 8 bytes

and the new block is 4 bytes, then the contents of the new laoekdentical to the first 4 bytes
of the old block.

e cal | oc: Allocates memory for an array afrenb elements ofsi ze bytes each and returns a
pointer to the allocated memory. The memory is set to zerorbetturning.

Note: Your cal | oc will not be graded on throughput or performance. Therefore acorrect
simple implementation will suffice.

e "Mmcheckheap: Themmcheckheap function scans the heap and checks it for consistency. This
function will be very useful in debugging your malloc implemation. Some malloc bugs are very
hard to debug using conventional gdb techniques. The ofdgtéfe technique for some of these bugs
is to use a heap consistency checker. When you you encoubigy, #ou can isolate it with repeated
calls to the consistency checker until you find the instarctihat corrupted your heap. Because of
the importance of the consistency checker, it will be graded

These semantics match the semantics of the correspohdimg routines. Typaran mal | oc to the shell
for complete documentation.

5 Support Routines

Themeni i b. ¢ package simulates the memory system for your dynamic meallogator. You can invoke
the following functions imemn i b. c:

e void »memsbrk(int incr): Expands the heap biyncr bytes, whera ncr is a positive
non-zero integer and returns a generic pointer to the figt bfythe newly allocated heap area. The
semantics are identical to the Uribr k function, except thatremsbr k accepts only a positive
non-zero integer argument.

e voi d *memheap. o(voi d) : Returns a generic pointer to the first byte in the heap.
e voi d *memheap_hi (voi d) : Returns a generic pointer to the last byte in the heap.
e sizet memheapsi ze(voi d) : Returns the current size of the heap in bytes.

e Si zet nmempagesi ze(voi d) : Returns the system’s page size in bytes (4K on Linux systems

6 The Trace-driven Driver Program

The driver progranmdr i ver . c inthenal | ocl ab- handout . t ar distribution tests younrm c¢ pack-
age for correctness, space utilization, and throughput driver program is controlled by a set tohce
filesthat are included in thieml | ocl ab- handout . t ar distribution. Each trace file contains a sequence
of allocate and free directions that instruct the driverath gour mal | oc andf r ee routines in some se-
guence. The driver and the trace files are the same ones wassillvhen we grade your handim c

file.

When the driver program is run, it will run each trace file X8ds: once to make sure your implementation
is correct, once to determine the space utilization, andm@stto determine the performance.

The driverndr i ver . ¢ accepts the following command line arguments. The normetaijon is to run it
with no arguments, but you may find it useful to use the argusn@uring development.

-t <tracedir>: Look for the default trace files in directotyr acedi r instead of the default
directory defined irtonfi g. h.

-f <tracefil e>: Use one particularr acef i | e instead of the default set of tracefiles for test-
ing correctness and performance.

-c <tracefil e>: Run a particulat r acef i | e exactly once, testing only for correctness. This
option is extremently useful if you want to print out debuggimessages.

- h: Print a summary of the command line arguments.

- | : Run and measurkei bc malloc in addition to the student’s malloc package. Thisiteriesting
mainly to see how slow the libc malloc package is.

- V: Verbose output. Prints additional diagnostic informatas each trace file is processed. Useful
during debugging for determining which trace file is causiogr malloc package to fail.

-v <verbose | evel >: This optional feature lets you set your verbose level miyta a par-
ticular integer.

-d <i >: Atdebug level 0, very little validity checking is done. hs useful if you're mostly done
but just tweaking performance.

At debug level 1, every array the driver allocates is fillethwandom bits. When the array is freed
or reallocated, we check to make sure the bits haven't beamgeld. This is the default.

At debug level 2, every time any operation is done, all armgschecked. This is very slow, but
useful to discover problems very quickly.

- D: Equivalent to- d2.

- s <s>: Timeout afters seconds. The default is to never timeout.

7 Programming Rules

e You should not change any of the interfacesrin h. However, we strongly encourage you to use
static functions imm c to break up your code into small, easy-to-understand segmen

¢ You should not invoke any external memory-managementelibrary calls or system calls. This
excludes the use of the bc mal | oc,cal | oc,free,real | oc,sbrk, br k orany other memory
management packages in your code.

e You are not allowed to define any global data structures ss@rrays, structs, trees, or lists in your
nm ¢ program. However, yoare allowed to declare global scalar variables such as intefleads,
and pointers immm c.

The reason for this restriction is that the driver can’t astdor such global variariables in it's mem-
ory utilization measure. If you need space for large datecsires, you can put them at the beginning
of the heap.

e You are not allowed to simply hand in the code for the alloafiom the CS:APP or K&R books. If
you do so you will receive no credit.

However, we encourage you to study these codes and to useathstarting points. For example, you
might modify the CS:APP code to use an explicit list with dans time coalescing. Or you might
modify the K&R code to use constant time coalescing. Or yogitniise either codes as the basis for
a segregated list allocator.

e It is OK to look at any descriptions of algorithms found in tiestbook or elsewhere, but it isot
acceptable to copy any code of malloc implementations famithe or in other sources, except for
the implicit list allocator described in your book.

e We encourage you to study the trace files and optimize for theernyour code must be correct on
any trace. The score you get is averaged over all traces th&tkd he utilization score weights all
traces equally, whereas the performance score weightsehyuimber of operations. In other words,
if you are worried about speed, optimize for the largestesac

e For consistency with thiei bc mal | oc package, which returns blocks aligned on 8-byte boundaries
your allocator must always return pointers that are alignetbyte boundaries. The driver will check
this requirement.

8 Evaluation

There are a total of 120 points. You will receizero pointsif you break any of the rules or your code is
buggy and crashes the driver. Otherwise, your grade wilkdbeutated as follows:

e Performance (100 pointsYwo metrics will be used to evaluate your solution:

— Space utilization The peak ratio between the aggregate amount of memory st ldriver
(i.e., allocated viaral | oc but not yet freed vid r ee) and the size of the heap used by your al-
locator. The optimal ratio equals to 1. You should find goolicjes to minimize fragmentation
in order to make this ratio as close as possible to the optimal

— Throughput The average number of operations completed per second.

The driver program summarizes the performance of yourattody computing @erformance index
0 < P <100, which is a weighted sum of the space utilization and thrpugh

T
leOO*(wmin<1, u >—|—(1—w)min<1,))
Uthresh Tthresh

whereU is your space utilization]” is your throughput, an@,;,..s, andTy,..s, are the estimated
space utilization and throughput of an optimized mallockpage® The performance index favors
space utilization over throughput: = 0.6.

Observing that both memory and CPU cycles are expensiversygsources, we adopt this formula
to encourage balanced optimization of both memory utitiraind throughput. Since each metric
will contribute at mostw and1 — w to the performance index, respectively, you should not go to
extremes to optimize either the memory utilization or th@tighput only. To receive a good score,
you must achieve a balance between utilization and thrautghp

The 100 performance point$ger f poi nt s) will be allocated as a function of the performance
index @per fi ndex):

if ($perfindex < 60) {
$per fpoints = 0;
}
elsif ($perfindex < 98) {
$perfpoints = (40 + ((3 » $perfindex)/5));

}
el se {

$perfpoints = 100;
}

We chose this function so that, when run on the saltwater figbhmes, the CS:APP implicit list
allocator receives 0/100 points, a good explicit list afime receives around 85/100 points, a good
segregated list allocator gets around 96/100 points, afghiyliuned seglist allocator can get 100/100
points.

Partial credit Partial credit will be available for those students who @mable to finish a working
allocator. If you can’t get your allocator to work by the dusel document and handin what you have
and your instructors will award partial credit manually.

1The values folsnresn aNdTinresn are constants in the driver (0.93 and 15,000 Kops/s) thatipstructor established when
they configured the program. This means that once you beau@i82ation and 15,000 Kops/s, your performance index i$quz.

e Heap Consistency Checker (10 points)en points will be awarded based on the quality of your
implementation ofrmcheckheap. It is up to your discretion how thorough you want your heap
checker to be. The more the checker tests, the more valuabiébe as a debugging tool.

However, to receive full credit for this part, we requiretttiee header comments for your heap checker
list all of the invariants of your data structure. For each such iamgryou should state whether or
not your heap checker verifies that it is satisfied. (It is nktt@ list all the invariants and not check
any of them - you should at least verify the critical portipn§ome examples of what your heap
checker should check are provided below.

— Checking the heap (implicit list, explicit list, segregatest):

*

Check epilogue and prologue blocks.
Check block’s address alignment.
Check heap boundaries.

Check each block’s header and footer: size (minimum sizgnm@lent), prev/next allo-
cate/free bit consistency, header and footer matching ethen.

x Check coalescing: no two consecutive free blocks in the.heap

* ¥

*

— Checking the free list (explicit list, segregated list):
x All next/prev pointers are consistent (if A's next point@imts to B, B’s prev pointer should
point to A).
x All free list pointers points betweamemheap_l o() andnemheap_hi gh() .

x Count free blocks by iterating every block, and traversirgg flist by pointers and see if
they match.

x All blocks in each list bucket fall within bucket size rangeg@regated list).

e Style (10 points).

— Your code should be decomposed into functions and use aslédalgrariables as possible.
You should use macros or inline functions to isolate the teoiarithmetic to as few places as
possible.

— Your code must begin with a header comment that gives an ieverf the structure of your
free and allocated blocks, the organization of the free distl how your allocator manipulates
the free list.

— In addition to this overview header comment, each functioougd be preceded by a header
comment that describes what the function does.

9 Handin Instructions

Make sure you have included your name and Andrew ID in the dree@mment ofrm c.

Hand in yournm c file by uploading it to Autolab. You may submit your solutiog many times as you
wish up until the due date.

Only the last version you submit will be graded.
For this lab, you must upload your code for the results to appe the class status page.

10 Hints

e Use thendri ver - c option or-f option. During initial development, using tiny trace files will
simplify debugging and testing. The first several tracesrtbla i ver runs are such small trace files.

e Use thendri ver -V options. The - V option will also indicate when each trace file is processed,
which will help you isolate errors.

e Use thendri ver - Doption. This does a lot of checking to quickly find errors.

e Compile withgcc - g and use a debuggerA debugger will help you isolate and identify out of
bounds memory references. You may want to modify the Makafiteremove the -O2 option during
initial testing.

e Use gdb’'snat ch commando find out what changed some value you didn’t expect to hasegéd.

e Understand every line of the implicit list malloc implernadian in the textbookA working version
of this allocator is included in your handout directorynm i nplicit. c.

e Encapsulate your pointer arithmetic in C preprocessor maar inline functionsPointer arithmetic
in memory managers is confusing and error-prone becausk theacasting that is necessary. You
can reduce the complexity significantly by writing macrosyour pointer operations. See the text
for examples.

e Remember we are working with 64-bit fish machir&sinters take up 8 bytes of space, so you should
understand the macros in the book and port them to 64-bit meshNotablysi zeof (si ze_t)
== 8 on 64-bit machines.

e Use your heap consistency checkéfe are assigning ten points to yoomheapcheck function
for a reason. A good heap consistency checker will save yawshend hours when debugging your
malloc package. You can use your heap checker to find out wehexretly things are going wrong
in your implementation (hopefully not in too many placesMake sure that your heap checker is
detailed. Your heap checker should scan the heap, perfgreainity checks and possibly printing out
useful debugging information. Every time you change youplementation, one of the first things
you should do is think about how yoamheapcheck will change, what sort of tests need to be
performed, etc.

e Use a profiler.You may find thegpr of tool helpful for optimizing performance.

e \ersioning your implementatioriYou may find it useful to manage a couple of different versiohs
implementation (i.e. explicit list, segregated list) ahgrithe assignment. Sincelr i ver looks for
nm ¢, creating a symbolic link between files is useful in this caBer example, you can create a
symbolic link betweermmm ¢ and your implementation such ast expl i ci t. ¢ with command

lineln -s mmexplicit nm c. Anexample of linkingrm i npl i cit. ctonmm c is provide
in the handouMbkef i | e (make nai ve will create a link betweenm c andmm i nplicit. c).
You can easily extend it to suit your implementation.

e Start early!lt is possible to write an efficient malloc package with a fexges of code. However, we
can guarantee that it will be some of the most difficult anchigijrated code you have written so far
in your career. So start early, and good luck!

11 More Hints

Basically, you want to design an algorithm and data strecfar managing free blocks that achieves the
right balance of space utilization and speed. Note thatith@ves a tradeoff. For space, you want to keep
our internal data structures small. Also, while allocatinigee block, you want to do a thorough (and hence
slow) scan of the free blocks, to extract a block that besbfitshneeds. For speed, you want fast (and hence
complicated) data structures that consume more space. diersome of the design options available to

you:

e Data structures to organize free blocks:

— Implicit free list
— Explicit free list
— Segregated free lists

e Algorithms to scan free blocks:

— First fit/Next fit
— Blocks sorted by address with first fit
— Best fit

You can pick (almost) any combination from the two. For exieanpou can implement an explicit free list
with next fit, a segregated list with best fit, and so on. Alsm) gan build on a working implementation of
a simple data structure to a more complicated one.

In general, we suggest that you start with an implicit frsg ihen change this to an explicit list, and then
use the explicit list as the basis for a final version basedegregjated lists.

