
Problem 1. (6 points):
Consider the following datatype definitions on an IA32 (x86) machine.

typedef struct {
char c;
double *p;
int i;
double d;
short s;

} struct1;

typedef union {
char c;
double *p;
int i;
double d;
short s;

} union1;

A. Using the template below (allowing a maximum of 32 bytes), indicate the allocation of data for a structure
of type struct1. Mark off and label the areas for each individual element (there are 5 of them). Cross
hatch the parts that are allocated, but not used (to satisfy alignment).

Assume the alignment rules discussed in lecture: data types of size � must be aligned on � -byte boundaries.
Clearly indicate the right hand boundary of the data structure with a vertical line.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
+---+
| |
+---+

B. How many bytes are allocated for an object of type struct1?

C. What alignment is required for an object of type struct1? (If an object must be aligned on an � -byte
boundary, then your answer should be � .)

D. If we define the fields of struct1 in a different order, we can reduce the number of bytes wasted by
each variable of type struct1. What is the number of unused, allocated bytes in the best case?

E. How many bytes are allocated for an object of type union1?

F. What alignment is required for an object of type union1? (If an object must be aligned on an � -byte
boundary, then your answer should be � .)

Page 1 of 0

