
This next problem will test your understanding of stack frames. It is based on the following recursive C
function:

int silly(int n, int *p)
{

int val, val2;

if (n > 0)
val2 = silly(n << 1, &val);

else
val = val2 = 0;

*p = val + val2 + n;

return val + val2;
}

This yields the following machine code:

silly:
pushl %ebp
movl %esp,%ebp
subl $20,%esp
pushl %ebx
movl 8(%ebp),%ebx
testl %ebx,%ebx
jle .L3
addl $-8,%esp
leal -4(%ebp),%eax
pushl %eax
leal (%ebx,%ebx),%eax
pushl %eax
call silly
jmp .L4
.p2align 4,,7

.L3:
xorl %eax,%eax
movl %eax,-4(%ebp)

.L4:
movl -4(%ebp),%edx
addl %eax,%edx
movl 12(%ebp),%eax
addl %edx,%ebx
movl %ebx,(%eax)
movl -24(%ebp),%ebx
movl %edx,%eax
movl %ebp,%esp
popl %ebp
ret

Page 1 of 0

Problem 34. (6 points):

A. Is the variable val stored on the stack? If so, at what byte offset (relative to %ebp) is it stored, and
why is it necessary to store it on the stack?

B. Is the variable val2 stored on the stack? If so, at what byte offset (relative to %ebp) is it stored, and
why is it necessary to store it on the stack?

C. What (if anything) is stored at -24(%ebp)? If something is stored there, why is it necessary to store
it?

D. What (if anything) is stored at -8(%ebp)? If something is stored there, why is it necessary to store
it?

Page 2 of 0

