CS 310H: Computer Organization and Programming

Lecture 1: Overview

Goals

- Understand the fundamental components of computer systems
- Hardware
- Machine language
- Assemblers
- Compilers
- Operating Systems
- Learn to program the machine at its most basic level

■ Why? Can't we just use a high level language?

- SW design decisions are driven by the HW

■ Understand program performance

- It's cool!

■ Without this knowledge, it's kind of like being an architect without knowing anything about construction

Logistics

Lectures MWF 10:00am, RLM 6.116 Lecturers Prof. Fussell
 TA Aditya Rawal
 Discussions Th 9-10 - GAR 1.134 Th 11-12 - PAR 204

More Logistics

Grading:
In-class Quizzes 30% (15% each for 2 highest)

Final Exam
Homework/Pgms
Participation
Textbooks:

30\%, Exam week
30\%
10% (discussion section)
Introduction to Computing Systems: From Bits and Gates to C and Beyond, by Patt and Patel, $2^{\text {nd }}$ edition

CS310 Online

URL:

www.cs.utexas.edu/users/fussell/cs310h

Email List: for class announcements (see web page to sign up)

My Favorite Program

$$
\begin{aligned}
& a[0]=1 ; \\
& \text { a[1] }=1 ; \\
& \text { for(i=2; i<100; i++) \{ } \\
& \quad \begin{array}{l}
\text { a[i] }=a[i-1]+a[i-2] ;
\end{array} \\
& \}
\end{aligned}
$$

$$
1,1,2,3,5,8,13,21, \ldots
$$

Your Computer

Layers of Abstraction

Specification
Program
compute the fibonacci sequence

$$
\begin{aligned}
& \text { for }(i=2 ; i<100 ; i++)\{ \\
& \quad a[i]=a[i-1]+a[i-2] ;\}
\end{aligned}
$$

ISA (Instruction Set Architecture)
load r1, a[i];
add r2, r2, r1;
microArchitecture

Logic

Transistors
Physics/Chemistry

The Mighty Transistor!

Intel 4004-1971

- The first microprocessor

$\square 2,300$ transistors
 ■ 108 KHz
 $\square 10 \mu \mathrm{~m}$ process

Intel 8086-1978

■ IBM PC processor

■ 29,000 transistors

■ 10 MHz
$\square 3 \mu \mathrm{~m}$ process

Intel Pentium - 1993

- First Intel processor to execute more than one instruction per cycle

■ 3.1 million transistors
■ 66 MHz
$\square 0.8 \mu \mathrm{~m}$ process

Intel Pentium IV - 2001

42 million transistors
 2 GHz
 $0.13 \mu \mathrm{~m}$ process

Could fit ~15,000 4004s on this chip!

AMD Opteron - 2004

- 106 million transistors
- 2.4 GHz
- $0.13 \mu \mathrm{~m}$ process

IBM Power 5-2004

- 276 million transistors
- 1.9 GHz
- $0.13 \mu \mathrm{~m}$ process
- 2 processors

Next Time

■ Basic (simple) electronics
$■$ Reading assignment:
■ P\&P Chapters 1, 2.1, 2.2, 3.1-3.2

