o EEEEESSRRE

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Instruction Set Architecture

m [SA = All of the programmer-visible components
and operations of the computer

B memory organization
® address space -- how may locations can be addressed?
= addressability -- how many bits per location?
B register set
® how many? what size? how are they used?
B instruction set
B opcodes
m data types

® addressing modes

®m [SA provides all information needed for someone that wants to
write a program in machine language
(or translate from a high-level language to machine language).

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

LC-3 Overview: Memory and Registers

® Memory
= address space: 2'° locations (16-bit addresses)
® addressability: 16 bits

® Registers

B temporary storage, accessed in a single machine cycle
® accessing memory generally takes longer than a single cycle

® cight general-purpose registers: RO - R7
m cach 16 bits wide
® how many bits to uniquely identify a register?

B other registers
® not directly addressable, but used by (and affected by) instructions

m PC (program counter), condition codes

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

[.C-3 Overview: Instruction Set

® Opcodes
®m 15 opcodes
B Operate instructions: ADD, AND, NOT
® Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
B Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP
® some opcodes set/clear condition codes, based on result:
® N = negative, Z = zero, P = positive (> 0)
m Data Types

m [6-bit 2’s complement integer

B Addressing Modes

® How i1s the location of an operand specified?
B non-memory addresses: immediate, register
B memory addresses: PC-relative, indirect, base+offset

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Operate Instructions

B Only three operations: ADD, AND, NOT

® Source and destination operands are registers

B These instructions do not reference memory.

B ADD and AND can use “immediate” mode,
where one operand 1s hard-wired into the instruction.

® Will show dataflow diagram with each instruction.

® illustrates when and where data moves
to accomplish the desired operation

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

NOT (Register)

15 14 1 12 11 10 7 & 5 4 3 2 1 0
NOT |1 0 0 1| Dst Sre (1 1 1 1 1 1
Register File
Dst
Src
(1)

Note: Src and Dst

S

N4

could be the same register.

University of Texas at Austin CS310H - Computer Organization

AN

Spring 2010 Don Fussell

6

ADD/AND (Register)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADD |0 0 0 1| Dst | srel |0|0 O sre2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AND [0 1 0 1| Dst | Srel [0|0 O sSre2
Register File \
Src2 this zero means ‘“register mode”
Dst
Srct
(1) (1)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 7

ADD/AND (Immediate)

15 14 13 12 11 10 & 8 7 6 5 4 3 2 1 0
ADD [0 0 0 1| Dst | Srecl |1 Trom5
15 14 13 12 11 10 & §§ 7 6 5 4 3 2 1 0
AND [0 1 0 1| Dst | Srel |1 Trm5

this one means “immediate mode” Register File
Note: Immediate field is
sign-extended.
Srci —+—
IR[4:0 1)
[40] > Sext

iy
NE4

Instruction Reg
University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

(1) I
U
(2)

Using Operate Instructions

® With only ADD, AND, NOT...

= How do we subtract?

® How do we OR?

® How do we copy from one register to another?

® How do we initialize a register to zero?

University of Texas at Austin CS310H - Computer Organization

Spring 2010 Don Fussell

9

Data Movement Instructions

B [oad -- read data from memory to register
= LD: PC-relative mode
® LDR: basetoffset mode
® LDI: indirect mode

B Store -- write data from register to memory
® ST: PC-relative mode
m STR: basetoffset mode
® STI: indirect mode

B [oad effective address -- compute address,
save 1n register
B LEA: immediate mode
B does not access memory

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

10

PC-Relative Addressing Mode

® Want to specify address directly in the instruction

® But an address 1s 16 bits, and so 1s an instruction!

® After subtracting 4 bits for opcode
and 3 bits for register, we have 9 bits available for address.

= Solution:
m Use the 9 bits as a signed offset from the current PC.

m 9 bits+ 256 < offset < +255
® Can form any address X, such that: PC-256 < X <PC +255

B Remember that PC 1s incremented as part of the FETCH phase;
®m This 1s done before the EVALUATE ADDRESS stage.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 11

LD (PC-Relative)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID|o o 1 ol Dst PCoffset9
PC Register File Memory
Dst
)
e
Sext ¢
) TIR[S:O] \V
Instruction Reg (2
\{
MAR 2
<<
MDR

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 12

ST (PC-Relative)

15 14 13 12 11 10 9 & 7 6 5 4 3 2 1 0
ST|[o 0 1 1 Src PCoffsetH
PC Register File Memory
Src
<
Sext ¢
) TIR[S:O] \V
Instruction Reg (2
\
MAR &
>
MDR

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 13

Indirect Addressing Mode

® With PC-relative mode, can only address data
within 256 words of the instruction.
® What about the rest of memory?

= Solution #1:

®m Read address from memory location,
then load/store to that address.

® First address 1s generated from PC and IR
(just like PC-relative addressing), then
content of that address 1s used as target for load/store.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

14

LDI (Indirect)

15 14 13 12 11 10 o 8 7 6 5 4 3 2 1 0
ILDI ({1 0 1 0| Dst PCoffset9
PC Register File Memory
Dst
) —
(®
—
Sext ¢ l
1) TIR[8:0] \
' N+ S -
5\
Instruction Reg (2) :
\{
MAR |4 Y
A <«
MDR ®

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 15

STI (Indirect)

15 14 13 12 11 10 7 6 5 4 3 2 1 0
STI |1 0 11 Src PCoffset9
PC Register File Memory
Src
G/\ —> A
(5)
—
Sext ¢ l
1) TIR[8:0] \
' N+ S -
6\
Instruction Reg (2) J
\{
MAR [&
<«
MDR ©

University of Texas at Austin CS310H - Computer Organization Spring 2010

Don Fussell

16

Base + Offset Addressing Mode

® With PC-relative mode, can only address data
within 256 words of the instruction.
® What about the rest of memory?

= Solution #2:

m Use a register to generate a full 16-bit address.

® 4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are used
as a signed offset.

m Offset is sign-extended before adding to base register.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

LDR (Baset+Offset)

15 14 13 12 11 10 & 8 7 6 5 4 3 2 1 0O
IDR|0o 1 1 0| Dst | Base offset6
Register File Memory
Dst
(4 Base
- 0 >
(1)
—> Sext
b
IR[5:0] VvV
"'/
Instruction Reg (2
\
MAR 3
<
MDR

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 18

STR (Base+Of{fset)

15 14 13 12 11 10 & 8 7 6 5 4 3 2 1 0O
STR |0 1 1 Src Base offsetéb
Register File Memory
Src
©) Base
(1)
—> Sext
!
IR[5:0] VvV
"'/
Instruction Reg (2)
\
MAR)
>
MDR

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

19

[Load Effective Address

® Computes address like PC-relative (PC plus
signed offset) and stores the result into a
register.

® Note: The address 1s stored 1n the register,
not the contents of the memory location.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 20

LEA (Immediate)

15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
LEA [1 1 0| Dst PCoffset9
PC Register File
Dst
Q)
Sext ¢ l
@ TirE:0] %
LL/
Instruction Reg o)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

21

Address

Instruction

Comments

x30F6

1110001111111101

Rl < PC -3 =x30F4

x30F7

0001010001101110

R2 <RI+ 14=x3102

x30F8

001101011111101 1

MJPC - 5] < R2
M[x30F4] < x3102

x30F9

0101010010100000

R2 <0

x30FA

0001010010100101

R2 < R2+5=5

x30FB

0111010001001110

MJR1+14] < R2
M[x3102] < 5

x30FC

1010011111110111

R3 < M[M[x30F4]]
R3 — M[x3102]
R3 <5

opcode

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 22

Control Instructions

®m Used to alter the sequence of instructions
(by changing the Program Counter)

® Conditional Branch

® branch is faken 1f a specified condition is true
= signed offset 1s added to PC to yield new PC

® else, the branch 1s not taken

m PC is not changed, points to the next sequential instruction

® Unconditional Branch (or Jump)
® always changes the PC

m TRAP

® changes PC to the address of an OS “‘service routine”
B routine will return control to the next instruction (after TRAP)

University of Texas at Austin CS310H - Computer Organization

Spring 2010 Don Fussell

23

Condition Codes

m [L.C-3 has three condition code registers:
N -- negative
/. -- Zero
P -- positive (greater than zero)

® Set by any instruction that writes a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

®m Exactly one will be set at all times

® Based on the last instruction that altered a register

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 24

Branch Instruction

® Branch specifies one or more condition codes.
m [f the set bit is specified, the branch 1s taken.

® PC-relative addressing:
target address 1s made by adding signed offset (IR[8:0])
to current PC.

= Note: PC has already been incremented by FETCH stage.

® Note: Target must be within 256 words of BR 1nstruction.

m [f the branch 1s not taken,
the next sequential instruction 1s executed.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

25

BR (PC-Relative)

15 14 13 12 11 10 7 6 5 4 3 2 1 0
BR |0 0 0 0|ln|z p PCoffset9
PC 3

) — PCMUX \

T

(\:2:) taken

Logic IR[11:9]

Sext

Y

(D TIR[S:O] : N
' \ -+

]

Instruction Reg (2

What happens if bits [11:9] are all zero? All one?

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

26

Using Branch Instructions

® Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.

R1 < x3100
R3 < 0
R2 < 12
<
R4 < M[R1]
R3 < R3+R4
NO R1 < R1+1
R2 < R2-1
YES |

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 27

Sample Program

Address Instruction Comments
x3000 1110001011111 111 R1 < x3100 (PC+0xFF)
x3001 0101011011100000 R3 <0
x3002 0101010010100000 R2 <0
x3003 0001010010101100 R2<12
x3004 0000010000000101 If Z, goto x3004 (PC+3)
x3005 0110100001000000 Load next value to R4
x3006 0001011011000001 Add to R3
x3007 0001001001100001 Increment R1 (pointer)
X3008 000101001011111 1 Decrement R2 (counter)
x3009 0000111111111010 Goto x3004 (PC-6)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 28

JMP (Register)

® Jump 1s an unconditional branch -- a/lways taken.

® Target address 1s the contents of a register.

= Allows any target address.
15 14 13 12 11 10 ¢ 7 1 3 2 1 0

JMP |1 1oo\ooo\Base|oooooo

PC Register File

Base

/'/ 4\'-‘
(=)
.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

29

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TRAP |1 1 1 1(0 0 0O trapvects8
m (Calls a service routine, 1dentified by 8-bit “trap vector.”
vector | routine
x23 |input a character from the keyboard
x21 | output a character to the monitor
x25 |halt the program

® When routine 1s done,
PC is set to the nstruction following TRAP.
m (We’ll talk about how this works later.)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

30

Another Example

B Count the occurrences of a character 1n a file
= Program begins at location x3000
® Read character from keyboard

® [oad each character from a “file”
® File is a sequence of memory locations

® Starting address of file is stored in the memory location
immediately after the program

m [f file character equals input character, increment counter
® End of file is indicated by a special ASCII value: EOT (x04)

® At the end, print the number of characters and halt
(assume there will be less than 10 occurrences of the character)

®m A special character used to indicate the end of a sequence
1s often called a sentinel.

® Useful when you don’t know ahead of time how many times
to execute a loop.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

31

Flow Chart

Count=0
(R2=0)

i

Done? YES

Ptr = 1st file character
(R3 = M[x3012])

i

Input char

from keybd
(TRAP x23)

i

Convert count to

(R1?= EOT)

YES NO

Load char from file
(R1 = M[R3))

Incr Count
(R2=R2 +1)

v

Load next char from file
(R3=R3 + 1, R1 = M[R3])

> ASCII character
(RO = x30, RO = R2 + R0)

i

Print count
(TRAP x21)

e

" HALT
(TRAP x25) J

University of Texas at Austin CS310H - Computer Organization

Spring 2010 Don Fussell

32

Program (1 of 2)

Address Instruction Comments
x3000 0101 010 010 1 000O00O R2 < 0 (counter)
x3001 0010 011 000010000 R3<Mx3012] (prm)
x3002 1111 000O0 00100011 Inputto RO(TRAPx23)
x3003 0110 001 011 0000O0O RI < M[R3]
x3004 0001 100 001 1 11100 R4<RI-4(EOD
x3005 0000 010 000001000 If Z, goto x300E
x3006 1001 001 001 1 11111 RI < NOT RI
x3007 0001 001 001 1 00001 RI < RI+1
X3008 0001 001 001 O O0OOOO RI <RI +R0
x3009 0000 101 000000001 IfNorP, gotox300B

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 33

Program (2 of 2)

Address Instruction Comments
x300A 0001 010 010 1 00001 R2<R2+1
x300B 0001 011 011 1 00001 R3<R3+1
x300C 0110 001 011 0000O0OC RI < M|R3]
x300D 0000 111 111110110 Goto x3004

x300E 0010 00O 000000100 RO < M[x3013]

x300F 0001 000 000 O 00010 RO < RO+ R2

x3010 1111 0000 00100001 Print RO(TRAPx21)

x3011 1111 0000 00100101 HALT (TRAP x25)

X3012 Starting Address of File

x3013 0O000000000110000 ASCII x30 (‘0°)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 34

[LC-3 Data Path — y—

[] []
Revisited o [ore-o{ 7]
’ +1 REG
A6 & . or2
e PCMUX ? FILE
A LD.REG —&1
A T T 16
e 3 | spz SRl | s
SR2-/= ouT ouT [*/ SR

N

(zext]
=5
(701 /6 A6

T ADDR1MUX

\
16 /16 /‘46 %6 }16

[10:0] 0 = .

. SEXT SEXT| 2

4

Filled arrow »l&ow SR2MUX

= info to be processed. B . >.§J§.Est . Gt
Unfilled arrow A\ AL
CONTROL ALUK

= control signal.

ADDR2MUX

v

LoiR < R N Z|P <=—LDCC . 16
16 LOGIC
\/ GateALU
16
16 16 /18
Sl S
LD.MDR —c MDR | MAR <— LD.MAR
16
MEMORY INPUT QUTPUT
MEMEN, R.W

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 35

Data Path Components

B Global bus

m special set of wires that carry a 16-bit signal
to many components

® inputs to the bus are “tri-state devices,”
that only place a signal on the bus when they are enabled

® only one (16-bit) signal should be enabled at any time
= control unit decides which signal “drives” the bus

® any number of components can read the bus
® register only captures bus data if it is write-enabled by the control unit

B Memory
® Control and data registers for memory and I/O devices
B memory: MAR, MDR (also control signal for read/write)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 36

Data Path Components

m ALU

®m Accepts inputs from register file
and from sign-extended bits from IR (immediate field).

® Output goes to bus.

= used by condition code logic, register file, memory

m Register File
® Two read addresses (SR1, SR2), one write address (DR)

B [nput from bus
® result of ALU operation or memory read
® Two 16-bit outputs
® used by ALU, PC, memory address
m data for store instructions passes through ALU

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

37

Data Path Components

PC and PCMUX

Three inputs to PC, controlled by PCMUX
PC+1 — FETCH stage
Address adder — BR, JMP
bus — TRAP (discussed later)

MAR and MARMUX

Two inputs to MAR, controlled by MARMUX
1. Address adder — LD/ST, LDR/STR
2. Zero-extended IR[7:0] -- TRAP (discussed later)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

38

Data Path Components

®m Condition Code Logic

® [ooks at value on bus and generates N, Z, P signals

® Registers set only when control unit enables them (LD.CC)

= only certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)

B Control Unit — Finite State Machine

® On each machine cycle, changes control signals for next phase

of instruction processing
® who drives the bus? (GatePC, GateALU, ...)

®m which registers are write enabled? (LD.IR, LD.REG, ...)
® which operation should ALU perform? (ALUK)

. e oo

® Logic includes decoder for opcode, etc.

University of Texas at Austin CS310H - Computer Organization

Spring 2010 Don Fussell

39

Register Transfer
Language (RTL)

ADD:

MAR <-PC, PC <- PC+1
MDR <- MEM[MAR]
IR <- MDR

DECODE

GPR[IR[11:9]] <- GPR[IR[8:6]] + GPR[IR[2:0]], setCC()

] x

University of Texas at Austin CS310H - Computer Organization

GataMARMUX "\

MARMUX

A
A6 16

ADDR2MUX

[zexT)
E=5d
//FD] x /16 Ae

/N~ GatePC

@#

N REG
DR—~ FILE
LD.REG —&+
i 3

SR2 SR1 3
SR2-/= quT ouT [/ SR

PCMUX

.\
e
a\‘b
R

o/

16 /16 A16
[10:0]
L SEXT
[8:0
* /] » SEXT
159]
*/ >{ SEXT

LD.MDR —==| mnr |

—\
Jo

SEXT| L

[40] r

SR2MUX

FINTE [= 18
& STATE A\l
MACHINE A
[= ALU
"CONTROL| | ALUK

N Z|P<—LDcc . 16

4
v

r

@
<

LOGIC

\/ GateALU
16

A 18
Sl S

MAR <— I D MAR

INPUT QUTPUT I

MEMEN, RW

Spring 2010 Don Fussell 40

Register Transfer
Language (RTL)

LD:
MAR <- PC, PC<-PC + 1
MDR <- MEM[MAR]
IR <- MDR
DECODE
MAR <- PC + sext(IR[8:0])
MDR <- MEM[MAR]
GPRJ[IR[11:9]] <- MDR, setCC()

University of Texas at Austin CS310H - Computer Organization

GataMARMUX "\

MARMUX

A
A6

/N~ GatePC

16

@#

PCMUX

.\
e
a\‘b
R

N REG
DR—~ FILE
LD.REG —&+
i 3

SR2 SR1 3
SR2-/= quT ouT [/ SR

| ZEXT
ﬁr
79l o 16 AG
ADDR2MUX T ADDR1MUX
v \ il
i /6
16 16 16 %6 ;6
[10:0] 0 w7 .
. SEXT SEXT| 2
[#0] i
8
. /L* SEXT SR2ZMUX
590] FINITE [5 .
Y
./ >{ SEXT STATE | &
R ™ 1aCHINE 2 B Vo oa
[ALU
SICONTROL| | ALUK
1 .
LDIR—= IR NlZ| Ple=tees ¢ b
16 LOGIC
%/ GateALU
16
16 16 /16
S A
LD.MDR —==| MDR ‘ MAR <— LD.MAR
16
MENORY INPUT QUTPUT
MEN EN, RW
Spring 2010 Don Fussell 41

Register Transfer
Language (RTL)

GataMARMUX "\

/N~ GatePC

@#

fo fo f SEIN
1 T 2“ T 3 LD.REG:? SR2 SRl | 3
[ZexT SR2-/“™ gur ouT [¥7 SR
=7 T
//FD] + /16 AG
ADDR2IUX T ADDR1MUX
% }\ /} R
STR {%f 0{491 SEXT| 1/E} ’ .
MAR <- PC, PC <- PC + 1 ‘.@)JW N SR2MUX
MDR <- MEM[MAR] s R
IR <- MDR ., "o, A T\
DECODE LDIR—= IR N Z|P=—LDCC * 16
MAR <- GPR[IR[8:6]] + sext(IR[5:0]) 7+ [wse L
MDR <- GPR[IR[11:9]] =
MEM[MAR] <- MDR LD.MDR ;3 MDR 1|6 F}R—Q_ LD.MAR

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 42

Register Transfer mm— y—
Language (RTL) [

i ;
k. ke o2 REG
pcmux LS

T T LD.REG —&+
e 2 | sR2 SRt

[Zext] sz /= our ouT </ SR
JSR

: A 70l /6 A6
MAR <- PC, PC <- PC + |

DDFQHUX T ADDR1MUX
MDR <- MEM[MAR] o k

v \
IR <- MDR i) ‘° e /e j(j(!

N

DECODE e ||
[40] '
SR2ZMUX
‘ SEXT
R7 <- PC FINTE | 18
et R~ 2 Sa Vs
PC <- PC + SCXt(IR[lOO]) =\ AL
CONTROL| , ALUK
. .
LDIR—= IR NlZ| Ple=tees ¢ b
16 LOGIC
\/ GateALU
16
1% 16 /16
PE A
LD.MDR —=| MDR | MAR <— LD.MAR
16
MENORY INPUT QUTPUT |
MEMEN, RW

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 43

