
University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

I/O

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 2

I/O: Connecting to Outside World

So far, we’ve learned how to:
compute with values in registers
load data from memory to registers
store data from registers to memory

But where does data in memory come from?

And how does data get out of the system so that
humans can use it?

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 3

I/O: Connecting to the Outside World

Types of I/O devices characterized by:
behavior: input, output, storage

input: keyboard, motion detector, network interface
output: monitor, printer, network interface
storage: disk, CD-ROM

data rate: how fast can data be transferred?
keyboard: 100 bytes/sec
disk: 30 MB/s
network: 1 Mb/s - 1 Gb/s

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 4

I/O Controller

Control/Status Registers
CPU tells device what to do -- write to control register
CPU checks whether task is done -- read status register

Data Registers
CPU transfers data to/from device

Device electronics
performs actual operation

pixels to screen, bits to/from disk, characters from keyboard

Graphics ControllerControl/Status

Output Data ElectronicsCPU display

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 5

Programming Interface

How are device registers identified?
Memory-mapped vs. special instructions

How is timing of transfer managed?
Asynchronous vs. synchronous

Who controls transfer?
CPU (polling) vs. device (interrupts)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 6

Memory-Mapped vs. I/O Instructions

Instructions
designate opcode(s) for I/O
register and operation encoded in instruction

Memory-mapped
assign a memory address
to each device register
use data movement
instructions (LD/ST)
for control and data transfer

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 7

Transfer Timing

I/O events generally happen much slower
than CPU cycles.

Synchronous
data supplied at a fixed, predictable rate
CPU reads/writes every X cycles

Asynchronous
data rate less predictable
CPU must synchronize with device,
so that it doesn’t miss data or write too quickly

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 8

Transfer Control
Who determines when the next data transfer occurs?

Polling
CPU keeps checking status register until
new data arrives OR device ready for next data
 “Are we there yet? Are we there yet? Are we there yet?”

Interrupts
Device sends a special signal to CPU when
new data arrives OR device ready for next data
CPU can be performing other tasks instead of polling device.
 “Wake me when we get there.”

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 9

LC-3
Memory-mapped I/O (Table A.3)

Asynchronous devices
synchronized through status registers

Polling and Interrupts
the details of interrupts will be discussed in Chapter 10

Bit [15] is one when device ready to
display another char on screen.Display Status Register (DSR)xFE04

Character written to bits [7:0] will be
displayed on screen.Display Data Register (DDR)xFE06

Bits [7:0] contain the last character
typed on keyboard.Keyboard Data Reg (KBDR)xFE02

Bit [15] is one when keyboard has
received a new character.Keyboard Status Reg (KBSR)xFE00

FunctionI/O RegisterLocation

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 10

Input from Keyboard

When a character is typed:
its ASCII code is placed in bits [7:0] of KBDR
(bits [15:8] are always zero)
the “ready bit” (KBSR[15]) is set to one
keyboard is disabled -- any typed characters will be ignored

When KBDR is read:
KBSR[15] is set to zero
keyboard is enabled

KBSR

KBDR
15 8 7 0

1514 0

keyboard data

ready bit

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 11

Basic Input Routine

new
char?

read
character

YES

NO

Polling

POLL LDI R0, KBSRPtr
 BRzp POLL
 LDI R0, KBDRPtr

 ...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 12

Simple Implementation: Memory-Mapped Input

Address Control Logic
determines whether
MDR is loaded from

Memory or from KBSR/KBDR.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 13

Output to Monitor

When Monitor is ready to display another character:
the “ready bit” (DSR[15]) is set to one

When data is written to Display Data Register:
DSR[15] is set to zero
character in DDR[7:0] is displayed
any other character data written to DDR is ignored
(while DSR[15] is zero)

DSR

DDR
15 8 7 0

1514 0

output data

ready bit

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 14

Basic Output Routine

screen
ready?

write
character

YES

NO

Polling

POLL LDI R1, DSRPtr
BRzp POLL
STI R0, DDRPtr

...

DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 15

Simple Implementation: Memory-Mapped Output

Sets LD.DDR
or selects

DSR as input.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 16

Keyboard Echo Routine
Usually, input character is also printed to screen.

User gets feedback on character typed
and knows its ok to type the next character.

new
char?

read
character

YES

NO

screen
ready?

write
character

YES

NO

POLL1 LDI R0, KBSRPtr
BRzp POLL1
LDI R0, KBDRPtr

POLL2 LDI R1, DSRPtr
BRzp POLL2
STI R0, DDRPtr

...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02
DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 17

Interrupt-Driven I/O

External device can:
(1) Force currently executing program to stop;
(2) Have the processor satisfy the device’s needs; and
(3) Resume the stopped program as if nothing happened.

Why?
Polling consumes a lot of cycles,
especially for rare events – these cycles can be used
for more computation.
Example: Process previous input while collecting
current input. (See Example 8.1 in text.)

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 18

Interrupt-Driven I/O
To implement an interrupt mechanism, we need:

A way for the I/O device to signal the CPU that an
interesting event has occurred.
A way for the CPU to test whether the interrupt signal is set
and whether its priority is higher than the current program.

Generating Signal
Software sets "interrupt enable" bit in device register.
When ready bit is set and IE bit is set, interrupt is signaled.

KBSR
1514 0

ready bit
13

interrupt enable bit

interrupt signal
to processor

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 19

Priority

Every instruction executes at a stated level of urgency.
LC-3: 8 priority levels (PL0-PL7)

Example:
Payroll program runs at PL0.
Nuclear power correction program runs at PL6.

It’s OK for PL6 device to interrupt PL0 program,
but not the other way around.

Priority encoder selects highest-priority device,
compares to current processor priority level,
and generates interrupt signal if appropriate.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 20

Testing for Interrupt Signal

CPU looks at signal between STORE and FETCH phases.
If not set, continues with next instruction.
If set, transfers control to interrupt service routine.

EA

OP

EX

S

F

D

interrupt
signal?

Transfer to
ISR

NO

YES

More details in Chapter 10.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 21

Full Implementation of LC-3 Memory-Mapped I/O

Because of interrupt enable bits, status registers (KBSR/DSR)
must be written, as well as read.

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 22

Review Questions

What is the danger of not testing the DSR
before writing data to the screen?

What is the danger of not testing the KBSR
before reading data from the keyboard?

What if the Monitor were a synchronous device,
e.g., we know that it will be ready 1 microsecond after
character is written.

Can we avoid polling? How?
What are advantages and disadvantages?

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell 23

Review Questions
Do you think polling is a good approach for other devices,
such as a disk or a network interface?

What is the advantage of using LDI/STI for accessing
device registers?

