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Pointers and Arrays
We've seen examples of both of these
in our LC-3 programs; now we'll see them in C.

Pointer
Address of a variable in memory
Allows us to indirectly access variables

in other words, we can talk about its address
rather than its value

Array
A list of values arranged sequentially in memory
Example: a list of telephone numbers
Expression a[4] refers to the 5th element of the array a
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Address vs. Value
Sometimes we want to deal with the address
of a memory location,
rather than the value it contains.

Recall example from Chapter 6:
adding a column of numbers.
R2 contains address of first location.
Read value, add to sum, and
increment R2 until all numbers
have been processed.

R2 is a pointer -- it contains the
address of data we’re interested in.

x3107
x2819
x0110
x0310
x0100
x1110
x11B1
x0019

x3100

x3101

x3102

x3103

x3104

x3105

x3106

x3107

x3100R2

address

value
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Another Need for Addresses

Consider the following function that's supposed to
swap the values of its arguments.

void Swap(int firstVal, int secondVal)
{
  int tempVal = firstVal;
  firstVal = secondVal;
  secondVal = tempVal;
}
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Executing the Swap Function

 
 

firstVal
secondVal  
valueB 
valueA 

3
4
4
3

R6

before call

tempVal 
 
 

firstVal
secondVal  
valueB 
valueA 

3

4
3
4
3

R6

after call

These values
changed...

...but these
did not.

Swap needs addresses of variables outside its own
activation record.

Swap

main
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Pointers in C

C lets us talk about and manipulate pointers
as variables and in expressions.

Declaration
int *p;  /* p is a pointer to an int */

A pointer in C is always a pointer to a particular data type:
int*, double*, char*, etc.

Operators
*p  -- returns the value pointed to by p
&z  -- returns the address of variable z
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Example

int i;
int *ptr;

i = 4;
ptr = &i;
*ptr = *ptr + 1;

store the value 4 into the memory location
associated with i

store the address of i into the 
memory location associated with ptr

read the contents of memory
at the address stored in ptr

store the result into memory
at the address stored in ptr
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Example: LC-3 Code
; i is 1st local (offset 0), ptr is 2nd (offset -1)
; i = 4;

AND  R0, R0, #0  ; clear R0
ADD  R0, R0, #4  ; put 4 in R0
STR  R0, R5, #0  ; store in i
; ptr = &i;
ADD  R0, R5, #0  ; R0 = R5 + 0 (addr of i)
STR  R0, R5, #-1 ; store in ptr
; *ptr = *ptr + 1;
LDR  R0, R5, #-1 ; R0 = ptr
LDR  R1, R0, #0  ; load contents (*ptr)
ADD  R1, R1, #1  ; add one
STR  R1, R0, #0  ; store result where R0 points
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Pointers as Arguments

Passing a pointer into a function allows the function
to read/change memory outside its activation record.

void NewSwap(int *firstVal, int *secondVal)
{
  int tempVal = *firstVal;
  *firstVal = *secondVal;
  *secondVal = tempVal;
} Arguments are

integer pointers.
Caller passes addresses
of variables that it wants
function to change.
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Passing Pointers to a Function

main() wants to swap the values of valueA and valueB
passes the addresses to NewSwap:

NewSwap(&valueA, &valueB);

Code for passing arguments:
ADD R0, R5, #-1 ; addr of valueB
ADD R6, R6, #-1 ; push
STR R0, R6, #0
ADD R0, R5, #0  ; addr of valueA
ADD R6, R6, #-1 ; push
STR R0, R6, #0

tempVal

firstVal
secondVal
valueB
valueA

xEFFA
xEFF9

4
3

xEFFD

R6

R5



University of Texas at Austin    CS310  -  Computer Organization     Spring 2009   Don Fussell                 11

Code Using Pointers

Inside the NewSwap routine
; int tempVal = *firstVal;
LDR  R0, R5, #4 ; R0=xEFFA
LDR  R1, R0, #0 ; R1=M[xEFFA]=3
STR  R1, R5, #4 ; tempVal=3
; *firstVal = *secondVal;
LDR  R1, R5, #5 ; R1=xEFF9
LDR  R2, R1, #0 ; R1=M[xEFF9]=4
STR  R2, R0, #0 ; M[xEFFA]=4
; *secondVal = tempVal;

LDR  R2, R5, #0 ; R2=3
STR  R2, R1, #0 ; M[xEFF9]=3

tempVal

firstVal
secondVal
valueB
valueA

3

xEFFA
xEFF9

3
4

xEFFD

R6
R5
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Null Pointer

Sometimes we want a pointer that points to nothing.
In other words, we declare a pointer, but we’re not ready
to actually point to something yet.

int *p;
p = NULL;  /* p is a null pointer */

NULL is a predefined macro that contains a value that
a non-null pointer should never hold.

Often, NULL = 0, because Address 0 is not a legal address
for most programs on most platforms.
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Using Arguments for Results
Pass address of variable where you want result stored

useful for multiple results
Example:

return value via pointer
return status code as function result

This solves the mystery of why ‘&’ with argument to
scanf:

scanf("%d ", &dataIn);

read a decimal integer
and store in dataIn
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Syntax for Pointer Operators

Declaring a pointer
type *var;
type* var;

Either of these work -- whitespace doesn't matter.
Type of variable is int* (integer pointer), char* (char pointer), etc.
Creating a pointer

&var
Must be applied to a memory object, such as a variable.
In other words, &3 is not allowed.

Dereferencing
Can be applied to any expression.  All of these are legal:

*var contents of mem loc pointed to by var
**var contents of mem loc pointed to by

memory location pointed to by var
*3 contents of memory location 3
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Example using Pointers
IntDivide performs both integer division and remainder,
returning results via pointers.  (Returns –1 if divide by zero.)

int IntDivide(int x, int y, int *quoPtr, int *remPtr);

main()
{

   int dividend, divisor;  /* numbers for divide op */
   int quotient, remainer; /* results */
   int error;
   /* ...code for dividend, divisor input removed... */
   error = IntDivide(dividend, divisor,
                      &quotient, &remainder);
   /* ...remaining code removed... */
}
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C Code for IntDivide

int IntDivide(int x, int y, int *quoPtr, int *remPtr)
{
   if (y != 0) {
      *quoPtr = x / y;  /* quotient in *quoPtr */
      *remPtr = x % y;  /* remainder in *remPtr */
      return 0;
   }
   else
      return –1;
}
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Arrays
How do we allocate a group of memory locations?

character string
table of numbers

How about this?
Not too bad, but…

what if there are 100 numbers?
how do we write a loop to process each number?

Fortunately, C gives us a better way -- the array.
int num[4];

Declares a sequence of four integers, referenced by:
num[0], num[1], num[2], num[3]

int num0;
int num1;
int num2;
int num3;
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Array Syntax
Declaration
type  variable[num_elements];

Array Reference
variable[index];

all array elements
are of the same type

number of elements must be
known at compile-time

i-th element of array (starting with zero);
no limit checking at compile-time or run-time
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Array as a Local Variable

Array elements are allocated
as part of the activation record.

int grid[10];

First element (grid[0])
is at lowest address
of allocated space.

If grid is first variable allocated,
then R5 will point to grid[9].

grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]
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LC-3 Code for Array References

; x = grid[3] + 1
ADD R0, R5, #-9  ; R0 = &grid[0]
LDR R1, R0, #3   ; R1 = grid[3]
ADD R1, R1, #1   ; plus 1
STR R1, R5, #-10 ; x = R1

; grid[6] = 5;
AND R0, R0, #0
ADD R0, R0, #5  ; R0 = 5
ADD R1, R5, #-9 ; R1 = &grid[0]
STR R0, R1, #6  ; grid[6] = R0

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5
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More LC-3 Code

  ; grid[x+1] = grid[x] + 2
    LDR R0, R5, #-10  ; R0 = x

  ADD R1, R5, #-9   ; R1 = &grid[0]
  ADD R1, R0, R1    ; R1 = &grid[x]
  LDR R2, R1, #0    ; R2 = grid[x]
  ADD R2, R2, #2    ; add 2

  LDR R0, R5, #-10  ; R0 = x
  ADD R0, R0, #1    ; R0 = x+1
  ADD R1, R5, #-9   ; R1 = &grid[0]
  ADD R1, R0, R1    ; R1 = &grix[x+1]
  STR R2, R1, #0    ; grid[x+1] = R2

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5
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Passing Arrays as Arguments
C passes arrays by reference

the address of the array (i.e., of the first element)
is written to the function's activation record
otherwise, would have to copy each element

main() {

int numbers[MAX_NUMS];
…

mean = Average(numbers);
…
}

int Average(int inputValues[MAX_NUMS]) {
…
for (index = 0; index < MAX_NUMS; index++)

sum = sum + indexValues[index];
return (sum / MAX_NUMS);

}

This must be a constant, e.g.,
#define MAX_NUMS 10
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A String is an Array of Characters

Allocate space for a string just like any other array:
char outputString[16];

Space for string must contain room for terminating zero.
Special syntax for initializing a string:

char outputString[16] = "Result = ";

…which is the same as:
outputString[0] = 'R';
outputString[1] = 'e';
outputString[2] = 's';
...
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I/O with Strings

Printf and scanf use "%s" format character for string

Printf -- print characters up to terminating zero
printf("%s", outputString);

Scanf -- read characters until whitespace,
store result in string, and terminate with zero
scanf("%s", inputString);
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Arrays and Pointers
An array name is essentially a pointer
to the first element in the array

char word[10];
char *cptr;

cptr = word;  /* points to word[0] */

Difference:
Can change the contents of cptr, as in

cptr = cptr + 1;

(The identifier "word" is not a variable.)
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Ptr and Array Notation

Given the declarations on the previous page,
each line below gives three equivalent expressions:

 cptr word &word[0]
(cptr + n) word + n &word[n]
*cptr *word word[0]
*(cptr + n) *(word + n) word[n]
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Pitfalls with Arrays in C

Overrun array limits
There is no checking at run-time or compile-time
to see whether reference is within array bounds.
int array[10];
int i;
for (i = 0; i <= 10; i++) array[i] = 0;

Declaration with variable size
Size of array must be known at compile time.
void SomeFunction(int num_elements) {
  int temp[num_elements];
  …
}
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Pointer Arithmetic
Address calculations depend on size of elements

In our LC-3 code, we've been assuming one word per element.
e.g., to find 4th element, we add 4 to base address

It's ok, because we've only shown code for int and char,
both of which take up one word.
If double, we'd have to add 8 to find address of 4th element.

C does size calculations under the covers,
depending on size of item being pointed to:
double x[10];
double *y = x;

*(y + 3) = 13;

allocates 20 words (2 per element)

same as x[3] -- base address plus 6


