
University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell

 C Pointers and Arrays

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 2

Pointers and Arrays
We've seen examples of both of these
in our LC-3 programs; now we'll see them in C.

Pointer
Address of a variable in memory
Allows us to indirectly access variables

in other words, we can talk about its address
rather than its value

Array
A list of values arranged sequentially in memory
Example: a list of telephone numbers
Expression a[4] refers to the 5th element of the array a

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 3

Address vs. Value
Sometimes we want to deal with the address
of a memory location,
rather than the value it contains.

Recall example from Chapter 6:
adding a column of numbers.
R2 contains address of first location.
Read value, add to sum, and
increment R2 until all numbers
have been processed.

R2 is a pointer -- it contains the
address of data we’re interested in.

x3107
x2819
x0110
x0310
x0100
x1110
x11B1
x0019

x3100

x3101

x3102

x3103

x3104

x3105

x3106

x3107

x3100R2

address

value

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 4

Another Need for Addresses

Consider the following function that's supposed to
swap the values of its arguments.

void Swap(int firstVal, int secondVal)
{
 int tempVal = firstVal;
 firstVal = secondVal;
 secondVal = tempVal;
}

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 5

Executing the Swap Function

firstVal
secondVal
valueB
valueA

3
4
4
3

R6

before call

tempVal

firstVal
secondVal
valueB
valueA

3

4
3
4
3

R6

after call

These values
changed...

...but these
did not.

Swap needs addresses of variables outside its own
activation record.

Swap

main

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 6

Pointers in C

C lets us talk about and manipulate pointers
as variables and in expressions.

Declaration
int *p; /* p is a pointer to an int */

A pointer in C is always a pointer to a particular data type:
int*, double*, char*, etc.

Operators
*p -- returns the value pointed to by p
&z -- returns the address of variable z

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 7

Example

int i;
int *ptr;

i = 4;
ptr = &i;
*ptr = *ptr + 1;

store the value 4 into the memory location
associated with i

store the address of i into the
memory location associated with ptr

read the contents of memory
at the address stored in ptr

store the result into memory
at the address stored in ptr

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 8

Example: LC-3 Code
; i is 1st local (offset 0), ptr is 2nd (offset -1)
; i = 4;

AND R0, R0, #0 ; clear R0
ADD R0, R0, #4 ; put 4 in R0
STR R0, R5, #0 ; store in i
; ptr = &i;
ADD R0, R5, #0 ; R0 = R5 + 0 (addr of i)
STR R0, R5, #-1 ; store in ptr
; *ptr = *ptr + 1;
LDR R0, R5, #-1 ; R0 = ptr
LDR R1, R0, #0 ; load contents (*ptr)
ADD R1, R1, #1 ; add one
STR R1, R0, #0 ; store result where R0 points

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 9

Pointers as Arguments

Passing a pointer into a function allows the function
to read/change memory outside its activation record.

void NewSwap(int *firstVal, int *secondVal)
{
 int tempVal = *firstVal;
 *firstVal = *secondVal;
 *secondVal = tempVal;
} Arguments are

integer pointers.
Caller passes addresses
of variables that it wants
function to change.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 10

Passing Pointers to a Function

main() wants to swap the values of valueA and valueB
passes the addresses to NewSwap:

NewSwap(&valueA, &valueB);

Code for passing arguments:
ADD R0, R5, #-1 ; addr of valueB
ADD R6, R6, #-1 ; push
STR R0, R6, #0
ADD R0, R5, #0 ; addr of valueA
ADD R6, R6, #-1 ; push
STR R0, R6, #0

tempVal

firstVal
secondVal
valueB
valueA

xEFFA
xEFF9

4
3

xEFFD

R6

R5

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 11

Code Using Pointers

Inside the NewSwap routine
; int tempVal = *firstVal;
LDR R0, R5, #4 ; R0=xEFFA
LDR R1, R0, #0 ; R1=M[xEFFA]=3
STR R1, R5, #4 ; tempVal=3
; *firstVal = *secondVal;
LDR R1, R5, #5 ; R1=xEFF9
LDR R2, R1, #0 ; R1=M[xEFF9]=4
STR R2, R0, #0 ; M[xEFFA]=4
; *secondVal = tempVal;

LDR R2, R5, #0 ; R2=3
STR R2, R1, #0 ; M[xEFF9]=3

tempVal

firstVal
secondVal
valueB
valueA

3

xEFFA
xEFF9

3
4

xEFFD

R6
R5

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 12

Null Pointer

Sometimes we want a pointer that points to nothing.
In other words, we declare a pointer, but we’re not ready
to actually point to something yet.

int *p;
p = NULL; /* p is a null pointer */

NULL is a predefined macro that contains a value that
a non-null pointer should never hold.

Often, NULL = 0, because Address 0 is not a legal address
for most programs on most platforms.

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 13

Using Arguments for Results
Pass address of variable where you want result stored

useful for multiple results
Example:

return value via pointer
return status code as function result

This solves the mystery of why ‘&’ with argument to
scanf:

scanf("%d ", &dataIn);

read a decimal integer
and store in dataIn

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 14

Syntax for Pointer Operators

Declaring a pointer
type *var;
type* var;

Either of these work -- whitespace doesn't matter.
Type of variable is int* (integer pointer), char* (char pointer), etc.
Creating a pointer

&var
Must be applied to a memory object, such as a variable.
In other words, &3 is not allowed.

Dereferencing
Can be applied to any expression. All of these are legal:

*var contents of mem loc pointed to by var
**var contents of mem loc pointed to by

memory location pointed to by var
*3 contents of memory location 3

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 15

Example using Pointers
IntDivide performs both integer division and remainder,
returning results via pointers. (Returns –1 if divide by zero.)

int IntDivide(int x, int y, int *quoPtr, int *remPtr);

main()
{

 int dividend, divisor; /* numbers for divide op */
 int quotient, remainer; /* results */
 int error;
 /* ...code for dividend, divisor input removed... */
 error = IntDivide(dividend, divisor,
 "ient, &remainder);
 /* ...remaining code removed... */
}

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 16

C Code for IntDivide

int IntDivide(int x, int y, int *quoPtr, int *remPtr)
{
 if (y != 0) {
 quoPtr = x / y; / quotient in *quoPtr */
 remPtr = x % y; / remainder in *remPtr */
 return 0;
 }
 else
 return –1;
}

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 17

Arrays
How do we allocate a group of memory locations?

character string
table of numbers

How about this?
Not too bad, but…

what if there are 100 numbers?
how do we write a loop to process each number?

Fortunately, C gives us a better way -- the array.
int num[4];

Declares a sequence of four integers, referenced by:
num[0], num[1], num[2], num[3]

int num0;
int num1;
int num2;
int num3;

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 18

Array Syntax
Declaration
type variable[num_elements];

Array Reference
variable[index];

all array elements
are of the same type

number of elements must be
known at compile-time

i-th element of array (starting with zero);
no limit checking at compile-time or run-time

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 19

Array as a Local Variable

Array elements are allocated
as part of the activation record.

int grid[10];

First element (grid[0])
is at lowest address
of allocated space.

If grid is first variable allocated,
then R5 will point to grid[9].

grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 20

LC-3 Code for Array References

; x = grid[3] + 1
ADD R0, R5, #-9 ; R0 = &grid[0]
LDR R1, R0, #3 ; R1 = grid[3]
ADD R1, R1, #1 ; plus 1
STR R1, R5, #-10 ; x = R1

; grid[6] = 5;
AND R0, R0, #0
ADD R0, R0, #5 ; R0 = 5
ADD R1, R5, #-9 ; R1 = &grid[0]
STR R0, R1, #6 ; grid[6] = R0

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 21

More LC-3 Code

 ; grid[x+1] = grid[x] + 2
 LDR R0, R5, #-10 ; R0 = x

 ADD R1, R5, #-9 ; R1 = &grid[0]
 ADD R1, R0, R1 ; R1 = &grid[x]
 LDR R2, R1, #0 ; R2 = grid[x]
 ADD R2, R2, #2 ; add 2

 LDR R0, R5, #-10 ; R0 = x
 ADD R0, R0, #1 ; R0 = x+1
 ADD R1, R5, #-9 ; R1 = &grid[0]
 ADD R1, R0, R1 ; R1 = &grix[x+1]
 STR R2, R1, #0 ; grid[x+1] = R2

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 22

Passing Arrays as Arguments
C passes arrays by reference

the address of the array (i.e., of the first element)
is written to the function's activation record
otherwise, would have to copy each element

main() {

int numbers[MAX_NUMS];
…

mean = Average(numbers);
…
}

int Average(int inputValues[MAX_NUMS]) {
…
for (index = 0; index < MAX_NUMS; index++)

sum = sum + indexValues[index];
return (sum / MAX_NUMS);

}

This must be a constant, e.g.,
#define MAX_NUMS 10

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 23

A String is an Array of Characters

Allocate space for a string just like any other array:
char outputString[16];

Space for string must contain room for terminating zero.
Special syntax for initializing a string:

char outputString[16] = "Result = ";

…which is the same as:
outputString[0] = 'R';
outputString[1] = 'e';
outputString[2] = 's';
...

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 24

I/O with Strings

Printf and scanf use "%s" format character for string

Printf -- print characters up to terminating zero
printf("%s", outputString);

Scanf -- read characters until whitespace,
store result in string, and terminate with zero
scanf("%s", inputString);

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 25

Arrays and Pointers
An array name is essentially a pointer
to the first element in the array

char word[10];
char *cptr;

cptr = word; /* points to word[0] */

Difference:
Can change the contents of cptr, as in

cptr = cptr + 1;

(The identifier "word" is not a variable.)

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 26

Ptr and Array Notation

Given the declarations on the previous page,
each line below gives three equivalent expressions:

 cptr word &word[0]
(cptr + n) word + n &word[n]
*cptr *word word[0]
*(cptr + n) *(word + n) word[n]

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 27

Pitfalls with Arrays in C

Overrun array limits
There is no checking at run-time or compile-time
to see whether reference is within array bounds.
int array[10];
int i;
for (i = 0; i <= 10; i++) array[i] = 0;

Declaration with variable size
Size of array must be known at compile time.
void SomeFunction(int num_elements) {
 int temp[num_elements];
 …
}

University of Texas at Austin CS310 - Computer Organization Spring 2009 Don Fussell 28

Pointer Arithmetic
Address calculations depend on size of elements

In our LC-3 code, we've been assuming one word per element.
e.g., to find 4th element, we add 4 to base address

It's ok, because we've only shown code for int and char,
both of which take up one word.
If double, we'd have to add 8 to find address of 4th element.

C does size calculations under the covers,
depending on size of item being pointed to:
double x[10];
double *y = x;

*(y + 3) = 13;

allocates 20 words (2 per element)

same as x[3] -- base address plus 6

