

Representations of Boolean logic

- Truth table
- Boolean equation

■ Circuit element (gate)

Truth table

■ Brute force I/O specification
 ■ Grows exponentially with number of inputs

Boolean algebra

- Identities

$$
\begin{aligned}
& x+0=x \\
& x+1=1 \\
& x+x=x \\
& x+x^{\prime}=1 \\
& x \prime=x \\
& x * 1=x \\
& x * 0=0 \\
& x * x=x \\
& x * x^{\prime}=0
\end{aligned}
$$

Boolean algebra

- Commutativity

$$
\begin{aligned}
& x+y=y+x \\
& x * y=y * x
\end{aligned}
$$

- Associativity

$$
\begin{aligned}
& x+(y+z)=(x+y)+z \\
& x *(y * z)=(x * y) * z
\end{aligned}
$$

Boolean algebra

- Distributive

$$
\begin{aligned}
\mathrm{x} *(\mathrm{y}+\mathrm{z}) & =\mathrm{x} * \mathrm{y}+\mathrm{x} * \mathrm{z} \\
\mathrm{x}+(\mathrm{y} * \mathrm{z}) & =(\mathrm{x}+\mathrm{y}) *(\mathrm{x}+\mathrm{z}) \\
& =\mathrm{x}+\mathrm{xy}+\mathrm{xz}+\mathrm{yz} \\
& =\mathrm{x}(1+\mathrm{y})+\mathrm{xz}+\mathrm{yz} \\
& =\mathrm{x}+\mathrm{xz}+\mathrm{yz} \\
& =\mathrm{x}(1+\mathrm{z})+\mathrm{yz} \\
& =\mathrm{x}+\mathrm{yz}
\end{aligned}
$$

■ De Morgan

$$
\begin{aligned}
& (x+y)^{\prime}=x^{\prime} * y^{\prime} \\
& (x * y)^{\prime}=x^{\prime}+y^{\prime}
\end{aligned}
$$

CMOS gates - NOT

In	Out
0	1
1	0

CMOS gates - NAND

CMOS gates - NOR

CMOS gates - AND

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

CMOS gates - OR

