

University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Another look at D latch/flip-flop

Synchronous state machines

If a system can both process and store information, then the values stored in the memory elements depend on both the inputs and the previous values in these elements. This is called a sequential system.

Such a system is also called a finite-state machine (FSM).

If all changes to memory values happen at the same time as determined by a global system clock, we have a synchronous FSM.

FSM definition

An FSM has the following components:

- A set of states
- A set of inputs
- A set of outputs
- A state-transition function (of the states and inputs)
- An output function (of the states and maybe inputs)
- Moore machine - function of states only
- Mealy machine - function of states and inputs

This can be represented by a state diagram

- States are circles
- Arcs show the state transition function
- Arcs are labeled with input values
- Outputs are labels on states (Moore) or arcs (Mealy)

Another example - 2-bit counter

Counter starts at 0 (green) and increments each time the clock cycles, until it gets to 3 and then overflows back to 0 .

Only input is the clock, we don't show that.

$\mathrm{H}_{\text {old }}$	$\mathrm{L}_{\text {old }}$	$\mathrm{H}_{\text {new }}$	$\mathrm{L}_{\text {new }}$
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

2-bit counter

$$
\begin{array}{cc|c|c}
\mathrm{H}_{\text {old }} & \mathrm{L}_{\text {old }} & \mathrm{H}_{\text {new }} & \mathrm{L}_{\text {new }} \\
\hline 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
\mathrm{~L}_{\text {new }}=\mathrm{H}_{\text {old }} \mathrm{L}_{\text {old }}^{\prime}+\mathrm{H}_{\text {old }} \mathrm{L}_{\text {old }}^{\prime}=\mathrm{L}_{\text {old }} \\
\mathrm{H}_{\text {new }}=\mathrm{H}_{\text {old }} \mathrm{L}_{\text {old }}+\mathrm{H}_{\text {old }} \mathrm{L}_{\text {old }}^{\prime}
\end{array}
$$

2-bit counter with reset

R	$\mathrm{H}_{\text {old }}$	$\mathrm{L}_{\text {old }}$	$\mathrm{H}_{\text {new }}$	$\mathrm{L}_{\text {new }}$
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	x	x	0	0

$$
\left.\begin{array}{rl}
\mathrm{L}_{\text {new }} & =\mathrm{R}^{\prime} \mathrm{H}_{\text {old }} \mathrm{L}_{\text {old }}{ }^{\prime}+\mathrm{R}^{\prime} \mathrm{H}_{\text {old }} \mathrm{L}_{\text {old }}{ }^{\prime} \\
& \mathrm{R}^{\prime} \mathrm{L}_{\text {old d }}
\end{array}=\left(\mathrm{R}+\mathrm{L}_{\text {old }}\right)^{\prime}\right)^{\prime} \text {. }
$$

2-bit counter with reset

Counter with 7 -segment display

Each segment in the display can be lit independently to allow all 10 decimal digits to be displayed (also hex)

2-bit counter will need to display digits 0-3, so will output a 1 for each segment to be lit
 for a given state

Counter with output functions

R	H_{o}	L_{o}	H_{n}	L_{n}	A	B	C	D	E	F	G
0	0	0	0	1	1	1	1	1	1	1	0
0	0	1	1	0	0	1	1	0	0	0	0
0	1	0	1	1	1	1	0	1	1	0	1
0	1	1	0	0	1	1	1	1	0	0	1
1	x	x	0	0	0	0	0	0	0	0	0

$$
\begin{aligned}
& A=D=R^{\prime} H_{0}{ }^{\prime} L_{0}{ }^{\prime}+R^{\prime} H_{0} L_{0}{ }^{\prime}+R^{\prime} H_{0} L_{0}=R^{\prime}\left(H_{0}{ }^{\prime} L_{0}\right)^{\prime} \\
& \left.B=R^{\prime} \quad C=R^{\prime}\left(H_{0} L_{0}\right)^{\prime}\right) \\
& \mathrm{E}=\mathrm{R}^{\prime} \mathrm{L}_{\mathrm{o}}{ }^{\prime} \\
& \mathrm{F}=\mathrm{R}^{\prime} \mathrm{H}_{0}{ }^{\prime} \mathrm{L}_{\mathrm{o}}{ }^{\prime}=\left(\mathrm{R}+\mathrm{H}_{0}+\mathrm{L}_{\mathrm{o}}\right)^{\prime} \\
& \mathrm{G}=\mathrm{R}^{\prime} \mathrm{H}
\end{aligned}
$$

7 -segment output logic

Example - 101 lock

Combination lock with 101 being the combination

B is input signal to the lock, X is output signal to unlock

101 combination lock

$$
\begin{aligned}
X & =H_{0} L_{0} \\
H_{n} & =B^{\prime} H_{0}{ }^{\prime} L_{o}+B H_{0} L_{0}^{\prime} \\
L_{n} & =B H_{0}^{\prime} L_{0}+B H_{0} L_{0}^{\prime}+B H_{0} L_{0} \\
& =B H_{0}^{\prime} L_{o}+B H_{0} L_{o}+B H_{0} L_{0}^{\prime}+B H_{0} L_{0} \\
& =B L_{o}+B H_{0}
\end{aligned}
$$

LC-3 datapath

