
LRT overview

Bill Mark
CS395T

Sept 2, 2003



lrt

• Physically based renderer
• Designed to be extended

– This is good and bad…
• Well documented
• Good algorithmic optimizations
• Not micro-optimized
• Designed for static scenes 

– We’ll fix that later



Assignment #1
• Assignment:

– Instrument lrt to gather coherence data
– Summarize this data in histograms

• Purpose:
– Get familiar with lrt and tools
– Understand coherence properties of lrt

• Logistics:
– OK to work with partner
– Only high-level discussions with other groups
– Due at *start* of class, 9 days from now
– Turn in a written writeup



Four ways to think about lrt

• Geometry of the scene
– Where are rays?
– In what order do we trace the rays?

• C++ class structure of code
• File/directory organization of code
• Run-time “trace” through code

– Single-step in debugger



Geometry of the scene

• One eye ray at a time
– With differential information

• At surface hit, may recursively trace
additional rays

• (Figure on whiteboard)



Key physics-related classes
• Geometric/physical data

– Ray:: = information about a ray
– Radiance:: (L) = power / (area * solid angle)

• Spectrum:: = three such values
– Primitive:: = collection of surface geometry

• GeometricPrimitive:: = single geometric primitive (e.g. 
sphere)

– Light:: = photon emitter

• Basic physics computations
– SurfaceIntegrator::
– VolumeIntegrator::



Scene:: = main bag of stuff

• Data
– Geometry in scene (type=Primitives)
– Lights in scene (type=Light)
– Camera (type = Camera)
– Surface integrator to use (SurfaceIntegrator)
– Volume integrator to use (VolumeIntegator)
– Etc.

• Methods
– Render



Main rendering loop –
Scene::Render method

Setup;
Loop over samples {

Create camera ray for this sample
Evaluate ray’s radiance (i.e. trace the eye ray)
Add sample contribution to image

}



Trace a ray –
Scene::L method

• Determine radiance arriving along a ray
• Does all necessary work, including

recursive tracing of rays, etc.
• When ray hits a surface, Scene::L invokes

the appropriate SurfaceIntegrator



One surface integrator
Whitted::

• This is a plugin
– Lives in lrt.src/integrators/whitted.cc

• Code:
Find intersection of ray with surface

(Scene::Intersect Primitive::Intersect)
Compute radiance from reflection of direct illumination

(loop over lights;
weight each by BRDF/BSDF if not shadowed)

Trace specular reflection ray
Trace specular refraction ray



Lots of details omitted

• Fast ray/object intersection
– Accelerator : optimized data structure and 

methods to allow quick Intersect queries.


	LRT overview
	lrt
	Assignment #1
	Four ways to think about lrt
	Geometry of the scene
	Key physics-related classes
	Scene:: = main bag of stuff
	Main rendering loop – Scene::Render method
	Trace a ray –Scene::L method
	One surface integratorWhitted::
	Lots of details omitted

