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Abstract

Classic methods for Bayesian inference effectively con-
strain search to lie within regions of significant probability
of the temporal prior. This is efficient with an accurate dy-
namics model, but otherwise is prone to ignore significant
peaks in the true posterior. A more accurate posterior es-
timate can be obtained by explicitly finding modes of the
likelihood function and combining them with a weak tem-
poral prior. In our approach modes are found using effi-
cient example-based matching followed by local refinement
to find peaks and estimate peak bandwidth. By reweight-
ing these peaks according to the temporal prior we obtain
an estimate of the full posterior model. We show compara-
tive results on real and synthetic images in a high degree of
freedom articulated tracking task.

1. Introduction
Online articulated human tracking is the task of inferring
(for each frame) the pose that both explains the observed
image well, and is consistent with previous pose estimates
and our notion of human motion dynamics. The human
pose space is known to be large, making brute-force search
methods infeasible.

Since the peaks in the compatibility function between
images and pose are sharp [19], and dynamics are highly
uncertain (except for very structured cases such as walking),
a large number of hypotheses may have to be generated in
order to locate the actual pose. When posed in probabilistic
terms, the problem is the following: the pose likelihood is
sharp but multi-modal, and the (dynamics-based) temporal
prior is wide.

Looking under a streetlight to find a lost object at night
is an apt metaphor for classic approaches to this task, which
typically search within a region of the state space surround-
ing the estimate at a previous time step. It may not be
where the object is, but it’s an easy place to search! So
goes the rationale of existing Bayesian tracking approaches,
which base search on a strong temporal prior. In practice
the “streetlight” (i.e., samples from the prior) can be narrow
and bright (have high sample density), or be broad and dim

(low density); neither is sufficient to find sharp peaks of the
true posterior that are far from modes of the prior. Search-
ing under the streetlight, i.e., under the prior, is seemingly
desirable, but if the object is actually “in the dark” it is a
futile endeavor.

Ideally we would like to evaluate the likelihood of a
very broad and dense set of samples from the prior but this
is impractical with existing probabilistic filtering methods.
Broad search requires an extremely large number of sam-
ples, which are too costly to test and propagate individually.
However, with a sharp likelihood and a wide prior the shape
of the posterior distribution depends much more on the
shape of the likelihood than on the temporal prior. Tracking
performance may thus be improved by finding modes of the
likelihood function first and incorporating prior information
later.

In this paper we show how a broad search for modes of
the likelihood function can proceed efficiently, mitigating
the streetlight effect by considering regions of state space
that appear highly likely based on the observation in the
current frame. Whereas maintaining and propagating a very
large set of samples representing a prior is impractical, we
show how modes of the likelihood function can be sought
efficiently using fast search methods.

We leverage the recent introduction of view-based or
example-based methods [16, 11, 2], in which the depen-
dency between the pose and body appearance is learned
directly from large number of appearance/pose examples.
Such methods can be used to quickly locate pose samples
that are likely to be close to the modes of the likelihood
functions. Local, gradient-based search can then find mode
peaks, and estimate mode bandwidth. We are thus able
to efficiently estimate the complete likelihood function as
a mixture of a few Gaussians, each representing a narrow
peak in the likelihood.

By reweighting these peaks according to the temporal
prior we obtain an estimate of the full posterior model. In
contrast to previous view-based tracking methods, our pos-
terior accurately captures the multimodality of the likeli-
hood function when appropriate. In contrast to previous
sample-based methods it is able to search more broadly
through the state space, rather than only around the prior
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(or streetlight, to complete the metaphor).
In the following section we review relevant related work

on probabilistic tracking. We then present our method for
Exploring Likelihood MOdes (ELMO), and describe mode
detection, refinement, and temporal integration in turn. We
evaluate our approach with standard sequences from pub-
licly available rendering software and motion capture data,
as well as with real image sequences.

2. Prior Work

The core of our algorithm is the exploration of pose space
by finding modes of the likelihood function, and weight-
ing them by the prior to form an estimate of the posterior.
Modes are estimated by initializing a model-based gradient-
ascent algorithm at poses returned by a nearest neighbor
matching algorithm.

Pose estimation algorithms often use gradient ascent to
optimize the likelihood function (or pose-observation com-
patibility function in deterministic methods). Since like-
lihood modes are sharp, the initial hypothesis from which
optimization is started is extremely important; gradient as-
cent is not likely to locate the mode if initialized far from
it. Deterministic methods [14, 7, 8] use the previously es-
timated pose to start the search. While this is reasonable
in situations with small interframe motion, such algorithms
may lose track when fast motion or occlusion occurs.

While classic sampling-based probabilistic tracking al-
gorithms [17, 15] only evaluate the likelihood function, re-
cent approaches also use local optimization methods initial-
ized at samples from the temporal prior [19, 9, 4]. The
Hybrid Monte Carlo method of [5] incorporates gradient
information directly into the sampling process. Since the
temporal prior is obtained by propagating the pose posterior
at the previous time step through the uncertain prior, many
samples need to be drawn from it in order to get a good ini-
tialization point. The multi-hypothesis tracking approach
of [4] is similar to ours in that only modes of the posterior
(rather than individual samples) are propagated through dy-
namics, however it still requires sampling the propagated
modes in order to obtain seeds for local optimization. Al-
gorithms such as [20, 18] base their sampling method on
the likelihood rather than the temporal prior, but still require
generating and evaluating a large number of hypotheses.

As has been shown in [19], a local optimization is often
only as good as its starting location, and the wide temporal
prior is not the best source for pose samples that are close
to a mode of the likelihood. Fortunately, several pose esti-
mation methods have been recently developed that bypass
using a human body model altogether. Instead they use a
large number of view/pose pairs to directly learn the depen-
dency between the image and the human pose. Relevance
vector machine regression on the current observation and

the previous pose estimate is used in [1] to find a mode of
the posterior. The single-frame pose estimation algorithm
of [16] uses parameter sensitive hashing to retrieve several
samples with poses similar to the image, followed by robust
regression. In [11], a mixture model prior over multi-view
shape and pose is used to directly infer the unknown pose
of an observed silhouette shape in a single frame.

3. Tracking with Likelihood Modes

We approach online pose estimation in video sequences as
filtering in a probabilistic framework. The philosophy of
our algorithm is based on two observations regarding the
articulated tracking task. On the one hand, body dynam-
ics are often uncertain so the temporal pose prior is wide –
it assigns relatively large probability to large regions in the
pose space. On the other hand, common likelihood func-
tions (the compatibility between a rendered model and an
observed image) are sharp, but multi-modal. A reasonable
approximation to a sharply peaked multi-modal likelihood
function is a weighted sum of Gaussians with small covari-
ances.

Our algorithm, ELMO, proceeds as follows: we estimate
modes of the likelihood function by selecting a set of initial
pose hypotheses and refining them using a gradient-based
technique which is able to both locate the mode of the like-
lihood and estimate its covariance. We obtain the tempo-
ral prior by propagating modes of the posterior computed
at the previous time step through a weak dynamics model.
Finally, we compute an estimate of the posterior distribu-
tion by reweighting the likelihood modes according to the
temporal prior. An overview of the algorithm is shown in
Figure 1.

In order for local optimization to succeed, it is impor-
tant to select starting pose hypotheses that are sufficiently
close to the modes. While it is possible to generate initial
hypothesis from the wide temporal prior [19, 5, 17], or by
uniformly sampling the pose space, in both of these meth-
ods a large number of samples would need to be drawn in
order to obtain an hypothesis adequately close to the mode.
Instead, we use a learning-based search method which, af-
ter being trained on a suitable number of image/pose ex-
amples, is able to quickly extract pose hypotheses that with
high probability correspond to the observed image.

There are significant methodological differences be-
tween ELMO and classic particle filtering approaches. At
no time is a density represented as a (large) set of samples,
and so the need for a large number of likelihood evaluations
is avoided. Furthermore, repeated instances of the same hy-
pothesis do not imply a greater probability of that hypothe-
sis. We do assume that at least one pose hypothesis will be
extracted for each significant peak in the likelihood func-
tion. Thus a mode with low likelihood will have low weight
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Figure 1: High-level overview of the ELMO algorithm. A set of pose hypotheses near the modes of the likelihood function
are extracted using nearest neighbor search. The modes are refined with a gradient ascent algorithm initialized at every
hypothesis, and a weighted sum of Gaussians estimate is computed for the likelihood function. Note that the number of
hypotheses corresponding to a mode does not impact its estimated value. The posterior is then estimated by reweighting
members of the mixture according to the temporal prior.

even if the gradient ascent algorithm converged to it from
multiple starting hypotheses.

Since our algorithm is less reliant on the temporal prior
for initializing search, it is likely to handle occlusions better
then standard filtering methods. Indeed, ELMO can directly
find the correct likelihood modes in the post-occlusion
frames rather than starting with a (necessarily) wide prior.

3.1. Sampling with Parameter-Sensitive Hash-
ing

A key component of our approach is the ability to quickly
search the pose space for the small set of samples that lie
close to the modes of the likelihood function. While there
are a variety of fast regression or nearest neighbor search
methods that are appropriate for our task, in this paper we
rely on parameter-sensitive hashing (PSH) [16]. PSH is a
randomized algorithm for the indexing and retrieval of data
that allows very fast search of a large database of examples
for instances similar to a query in a parameter space. In our
case it means that from a database of images labeled with
the corresponding articulated poses, we can quickly retrieve
examples that with high probability have pose similar to the
unknown pose in the input image. This is done by learn-

ing, from examples of images with similar and dissimilar
poses, a set of hashing functions under which collision is
correlated with pose similarity, rather than directly with ap-
pearance similarity.

Thus, the pose examples returned by PSH typically lie
close to the modes of the likelihood function and should
be an appropriate set of initial hypotheses for a local opti-
mization algorithm even if the the training algorithm uses
features different from those used to compute the likeli-
hood. Furthermore, PSH is a modification of a locality-
sensitive hashing algorithm [10] and shares its sublinear
running time. Searching over tens of thousands of examples
with PSH is orders of magnitude faster than propagating and
evaluating an equivalent number of samples in a particle fil-
ter. As a result, the number of likelihood mode hypotheses
that we can search is much larger than the number of sam-
ples that we could possibly maintain in a particle filter (as
shown in the experiments below).

3.2. Local Optimization
We would like the likelihoodp(y|x) to represent the com-
patibility between the observed visual datay and the shape
of a 3D articulated model corresponding to the posex.
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In this paper, visual observationsy consist of calibrated
stereo image pairs which are used to build a 3D reconstruc-
tion of the scene. The shape of the human body in posex is
given by a 3D articulated modelB(x). Intuitively, the best
fit x̂ is obtained when the surface of the articulated model
B(x̂) lies closest to the observed scene points. Therefore
we define the likelihoodp(y|x) based on the distance be-
tween the articulated model and the observed scene. Such
criteria has been commonly used for stereo-based tracking
[3, 13]. In the case of monocular data, an adequate likeli-
hood model could be defined [17] by the reprojection error
of the 3D articulated model onto the images.

Let M(y) = {Mi(y)} be the set of 3D points of
the scene reconstructed from the stereo image pair. Let
{Nj(x)} be a set of sample points from the articulated
modelB(x). In practice, the distanced(M(y),B(x)) be-
tween the scene points and the articulated model can be
written as:

d2(M(y),B(x)) =
∑

j

d2
E(M(y), Nj(x)) (1)

where d2
E() is the Euclidean distance between the point

cloudM(y) and the pointNj(x).
A likelihood modelp(y|x) naturally follows as:

p(y|x) ∝ exp{−λd2(M(y),B(x))} (2)

whereλ a parameter depending on the uncertainty of the 3D
reconstruction.

Given a set of pose hypotheses returned by PSH and
mode locations propagated from the previous time step, we
fit a sum of Gaussians (3) to the approximate likelihood at
time t, p(yt|xt) defined in eq.(2).

We apply a local search algorithm using initializations
{xinit} from both the centers of the modesµt−1

i of the like-
lihood p(yt−1|xt−1) at the previous time step as well as
pose estimates provided by a global search algorithm such
as PSH. For each initializationxinitk

, we look for a local
maximumµt

k (with covarianceCt
k) of p(yt|xt). In many

cases, the local optimaµt
k converge to the same peaks of

the likelihoodp(yt|xt). Only the highest optima (µt
k,Ct

k)
are kept to represent the full likelihood modelp(yt|xt). In
practice, an average of 5 modes is usually kept.

The local optimumµk can be found using standard opti-
mization techniques such as gradient ascent or Levenberg-
Marquardt. However, in the particular case of like-
lihood functions based on a 3D metric error such as
d2(M(y),B(x)), approximative techniques such as those
based on the Iterative Closest Point (ICP) algorithm [3] can
be used in order to estimate the optimumµk and covariance
Ck (see [7, 8]). Such algorithms are proven to converge
(when initialized close to the solution) and are less compu-
tationally intensive than standard optimization techniques.

3.3. Temporal Integration
In typical articulated tracking tasks, as discussed above, the
temporal prior provides less information about the poste-
rior distribution than the likelihood function. Given a sum
of Gaussians representation of the likelihood function, we
show here how to efficiently integrate information over time
and estimate an instantaneous posterior.

A key challenge when propagating mixture models is the
combinatorial complexity cost. Indeed, if the posterior dis-
tribution at the previous time step (and thus the temporal
prior, as we assume simple diffusion dynamics) is estimated
as a mixture ofK Gaussians, and the likelihood is a sum of
L Gaussians, then it is reasonable to expect that the poste-
rior estimate at the current time step will be a mixture of
L × K Gaussians. We will show, however, that when the
temporal prior is wide (i.e. the noise covariance is much
greater than the covariance of the likelihood modes), then
the estimate of the posterior may be obtained simply by
modifying the weights of the likelihood Gaussians accord-
ing to the prior.

Let yt be the observation at timet, andxt be the pose.
Let the pose likelihood and temporal prior be

p(yt|xt) =

L∑
i=1

ŵt
iN(xt; µt

i, C
t
i ), ) (3)

p(xt|y0, y1, . . . , yt−1) =

K∑
j=1

wt−1
j N(xt; µt−1

j , Ct−1
j + Cη)

(4)

where N(x; µ, C) =
1√

(2π)D|C|
e−(x−µ)T C−1(x−µ).

The ith mode in the likelihood has meanµt
i, covariance

Ct
i and value ŵt

i√
(2π)D|Ct

i |
. Each component of the tempo-

ral prior has arisen from the posterior modes estimated at
the previous time step (characterized by meansµt−1

j , co-
variancesCt−1

j and weightswt−1
j ) after combination with

Gaussian noise with covarianceCη.
In general the posterior distribution

p(xt|y0, y1, . . . , yt) ∝ p(yt|xt)p(xt|y0, y1, . . . , yt−1)
would be a mixture ofL × K terms of the form
N(xt;µt

i, C
t
i )N(xt;µt−1

j , Ct−1
j + Cη). Each such

product can be expressed as:

N(xt;µt
i, C

t
i )N(xt;µt−1

j , Ct−1
j + Cη)

= kN(xt; µ̂i, Ĉi), where

k = N(µt
i;µ

t−1
j , Ct

i + Ct−1
j + Cη)

Ĉi = ((Ct
i )
−1 + (Ct−1

j + Cη)−1)−1

µ̂i = Ĉi((Ct
i )
−1µt

i + (Ct−1
j + Cη)−1µt−1

j )

Since we assume that the noise covariance is much
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greater that covariance of the likelihood modes, the follow-
ing is true:

Ct
i + Cη ≈ Cη

(Ct
i )
−1 + (Cη)−1 ≈ (Ct

i )
−1

The product can be approximated as

N(xt;µt
i, C

t
i )N(xt;µt−1

j , Ct−1
j + Cη) ≈ (5)

N(µt
i;µ

t−1
j , Cη)N(xt;µt

i, C
t
i )

and the posterior distribution is reduced to

p(xt|y0, y1, . . . , yt) ≈ 1∑L
i wt

i

L∑
i=1

wt
iN(xt;µt

i, C
t
i ), (6)

wt
i = ŵt

i

K∑
j=1

wt−1
j N(µt

i;µ
t−1
j , Cη)

Intuitively, we can expect that the wide temporal prior
does not vary much over the region of support of each Gaus-
sian in the likelihood, and the posterior distribution is then
the mixture of the same Gaussians but with their weights
modified by the probabilities assigned to their means by the
temporal prior.

4. Implementation and Experiments
In order to validate our approach, we performed various ex-
periments to compare our algorithm (ELMO) against both
its component algorithms PSH and ICP, as well as the par-
ticle filtering method Condensation [12].

The feature space over which PSH hash functions were
constructed consisted of concatenated multiscale edge di-
rection histograms (EDH) as in [16]. The EDH of an image
is computed by applying an edge detector, assigning each
edge pixel to one of the fixed directional bins (four in our
case), counting the number of edge pixels for each direc-
tion falling in each of a number of subwindows of various
sizes taken at various locations, and finally concatenating
the obtained counts in a single feature vector. For images of
200 by 200 pixels used in our database, with 3 scales (8, 16
and 32 pixels) and with location step size of half the scale,
the EDH consisted ofN = 13, 076 bins. We then selected
M = 3547 features for which the true-positive rate [16]
was above 0.65 and the true-position/false-positive gap was
at least 0.1. The data were then indexed byl = 50 hash
tables withk = 18 bit keys. For every frame, we retrieve
K = 50 training examples and use their poses to initialize
the ICP.

The labeled pose database indexed by PSH in our sys-
tem consists of 60,000 images of humanoid models in ran-
domly sampled poses created with Poser [6]. The models
were constrained to an upright posture, but the articulation

Figure 3: Example of color and disparity images used in the
synthetic sequences.

in the upper limbs as well as the orientation of the torso was
constrained only by anatomical feasibility. We rendered the
images from a viewpoint consistent with the camera settings
of the tracker, and for each image saved the articulated pose
information (3D locations of key body joints: neck, shoul-
ders, elbows etc.). Pose similarity when training PSH was
defined as less than 5 cm difference between any two joints.

4.1. Synthetic Sequences
The first set of experiments evaluates the ground truth error
relative to an extensive set of synthetic sequences.

Testing data consisted of a collection of synthetic se-
quences of people performing various kinds of activities
(e.g. walking, playing sports, greeting). The synthetic
sequences were generated from motion capture data taken
from a public website1 and rendered using Poser [6] to pro-
duce stereo image pairs. Then, standard correlation-based
stereo was performed on the image pairs to produce a “real-
istic” disparity image as shown in Figure 3.

Some of the sequences contain many challenges for ar-
ticulated tracking algorithms, including perspective effects
(e.g. images taken from a 45 degree angle, hands mov-
ing very close to the camera), multiple self-occlusions (e.g.
body turned on the side, completely hiding one of the arms),
partial visibility (e.g. arms out of the field of view of the
camera) and fast motions. Also note that the synthetic se-
quences have been rendered with characters and features
different from the ones used in the PSH training set.

The synthetic sequences’ images were used as input for
the Condensation, PSH, ICP, and ELMO algorithms. The
Condensation algorithm was implemented as described in
[12] and run usingN = 1000 particles. We use the same
likelihood function for Condensation and ELMO. The PSH
and ICP algorithms were implemented following [16]2 and
[8] respectively. We fixed the number of candidates re-
turned by PSH to 50 and computed the pose as the can-
didate with highest likelihood. Note that in order to run
the ICP and Condensation algorithms, the articulated model

1http://www.mocapdata.com
2Except that we omitted the local regression step.
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Figure 2: Tracking results extracted from the synthetic test sequences. These images show clearly the complexity of the
motions and the challenge for articulated tracking (e.g. perspective effect, self-occlusions).

was manually initialized at the beginning of the sequences.
For each algorithm, the pose estimation was compared to
the ground truth. The average ground truth errors per joint
over all the sequences are reported in Figure 4. Our algo-
rithm outperforms the Condensation, ICP and PSH algo-
rithms by having a smaller error and variance (the average
error is about 5 cm) and by automatically initializing track-
ing. As shown in Table 1, which shows the run time per
frame of each algorithm in this experiment, ELMO is sig-
nificantly faster than Condensation.

Figure 5 shows the variation of the average error over
time in three sequences. The error corresponding to the
ELMO algorithm is almost always smaller than that of the
other algorithms. In sequences corresponding to poses with
few challenges (e.g. all limbs visible, small motions), ICP
and ELMO give similar results. However, in harder se-
quences, such as the “bye” sequence, the ICP algorithm
eventually loses track after following an incorrect local op-
timum of the likelihood function. This can be seen in the
graph by a sudden increase of the error function around
frame 300.

We note that the pose estimation from PSH seems to
have been biased by some implementation issues. First PSH
was trained on a domain more restricted than the testing se-
quences (e.g. the examples in the PSH training set did not
include persons with a bent torso or bent legs such as Fig-
ure 2. This explains, for instance, the large errors obtained
for the “karate” sequence, which contains multiple images
of a person bending the torso and legs. PSH also seems
to have a constant offset error due to a misalignment and
scaling between the PSH referential and the coordinate sys-
tem used to estimate the likelihoodp(y|x). In spite of im-
plementation deficiencies, the results show that PSH is still
able to provide good initialization for a local search of the
optimum of the likelihood.
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Figure 4: Average and standard deviation of the ground
truth error obtained using Condensation, PSH, ICP, and
ELMO on six sequences of 1000 images each. Our algo-
rithm outperforms the Condensation, ICP and PSH algo-
rithms. The average error per joint for ELMO is less than 5
cm.

Condensation (1000 particles)PSH ICP ELMO
120 1 0.1 2

Table 1: Amount of time required by the algorithms to pro-
cess a single frame (in sec.)
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Figure 5: Tracking results on two of the six test sequences
(for better clarity, only segments of the sequences are
shown). The graphs report the ground truth error (vs. frame
number) corresponding to Condensation, PSH, ICP and
ELMO. (a) Fighting sequence, (b) Karate sequence. The er-
ror corresponding to the ELMO algorithm is almost always
the smallest.

4.2. Laboratory Sequences
In order to further validate our approach, we also collected
real sequences of people moving in front of a stereo cam-
era and used them as input for the ELMO algorithm. Fig-
ures 6 and 7 show tracking results obtained with the ELMO
algorithm on two sequences. In the first sequence, a per-
son is performing dance moves; in the second one, a person
is standing in front of a whiteboard and explaining a dia-
gram to a virtual audience. Both sequences were recorded
at a slow frame rate (less than 4 Hz), producing large image
motions between consecutive images. The reconstruction
of the 3D articulated model shows the good quality of pose
estimation provided by ELMO, in spite of the difficulty of
the sequences (e.g. large motions, complex poses).

The ELMO algorithm has very low computational com-
plexity, and should be implementable in real time. For each
frame, ELMO takes about one second to obtain up to 50 hy-
potheses with PSH and to perform local optimization with
typically 50 to 60 initial hypotheses. Since the number of

modes estimated at every time step is small, the temporal
integration cost is negligible.

5. Conclusions
We have presented ELMO, a method for tracking articu-
lated human bodies by exploring likelihood modes. Like-
lihood mode search is made feasible by a fast approxi-
mate nearest neighbor method; the modes are further re-
fined by a local optimization method that estimates mode
location as well as bandwidth. An approximate posterior
distribution is computed with an efficient mode reweight-
ing scheme. In contrast to classic sampling approaches, our
method can explore a much larger region of the pose space
since searching a vast number of examples with an approxi-
mate nearest neighbor search and refining a few modes is
much more efficient than maintaining a particle set of a
sufficient size. On real and synthetic sequences contain-
ing challenging body motions ELMO outperformed local
optimization, view-based search approaches, and Conden-
sation.
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