FMCAD 2004 START ConferenceManager    


A hybrid of counterexample-based and proof-based abstraction

Nina Amla and Ken McMillan

Presented at Formal Methods in Computer-Aided Design (FMCAD 2004), Austin, Texas, November 14-17, 2004


Abstract

Counterexample- and proof-based refinement are complementary approaches to iterative abstraction. In the former case, a single abstract counterexample is eliminated by each refinement step, while in the latter case, all counterexamples of a given length are eliminated. In counterexample-based abstraction, the concretization and refinement problems are relatively easy, but the number of iterations tends to be large. Proof-based abstraction, on the other hand, puts a greater burden on the refinement step, which can then become the performance bottleneck. In this paper, we show that counterexample- and proof-based refinement are extremes of a continuum, and propose a hybrid approach that balances the cost and quality of refinement. In a study of a large number of industrial verification problems, we find that there is a strong relation between the effort applied in the refinement phase and the number of refinement iterations. For this reason, proof-based abstraction is substantially more efficient than counterexample-based abstraction. However, a judicious application of the hybrid approach can lessen the refinement effort without unduly increasing the number of iterations, yielding a method that is somewhat more robust overall.


  
START Conference Manager (V2.46.3)
Maintainer: sanders@cs.ubc.ca