
A Formal Model of Clock Domain Crossing and

Automated Verification of Time-Triggered
Hardware

Julien Schmaltz∗

Institute for Computing and Information Sciences
Radboud University Nijmegen

The Netherlands
julien@cs.ru.nl

∗ Part of this work funded by the Verisoft Project, Uni. Saarbrücken,
Germany

and the Marie Curie project TAROT

FMCAD 2007, Nov. 11–14

eCall: Safety-Critical Automotive Application

◮ Automatic emergency call system

◮ A phone call is automatically emitted when car sensors detect
an accident

4 distributed components

◮ Sensors: severity

◮ Navigation System:
position

◮ Mobile Phone: send
information

◮ eCall: central
application

The Verisoft Project

◮ CLI: original work on stack proof (Moore et al.)

◮ Verisoft: Pervasive verification of distributed systems

Formal Proofs of

◮ Applications

◮ Operating systems

◮ Compilers

◮ Processors

◮ FlexRay bus

∗ Asynchronous
communications

Asynchronous Communications

◮ Clock imperfections
◮ drift: different clocks with different rates
◮ jitter: clocks without constant rates

◮ Metastability
◮ Metastable states: register output undefined
◮ Resolution: output stabilized non-deterministically to 1 or 0

FlexRay Architecture: Schedule Overview

FlexRay bus

A B C

◮ Time divided into rounds

◮ Each round divided into slots
tl

slot0 slot1 . . . slotj slotn−1

roundi

tk

◮ Every unit owns one slot
◮ slot0 → A
◮ slot1 → B
◮ slotj → C

◮ Clock synchronization algorithm

FlexRay Verification: Overview

tl

slot0 slot1 . . . slotj slotn−1

roundi

tk

◮ Clock synchronization correctness
◮ All units agree on global timing

◮ Schedule correctness
◮ Unit C starts sending m at time tk at the earliest
◮ Unit C stops sending at time tl at the latest

◮ Transmission correctness
◮ At time tl , all units have received m
◮ Functional correctness + timing analysis

Related Work

Physical layer protocol analysis

◮ First work by Moore (1993)
◮ Biphase mark protocol
◮ Theorem proving (Nqthm)

◮ Contemporary work by Bosscher, Polak and Vaandrager
(1994)

◮ Philips audio control protocol

◮ Recent work by Brown and Pike (2006)
◮ Biphase mark and 8N1 protocols
◮ k-induction (SAL)

◮ Recent work by Vaandrager and de Groot (2007)
◮ Biphase mark protocol
◮ Real-time model checking (Uppaal)

All works on abstract models, no real hardware

Contribution

◮ General formal model of clock domain crossing
◮ Metastability
◮ Clock drift/jitter
◮ Detailed timing parameters
◮ Realization in Isabelle/HOL

◮ Mixed with gate-level hardware designs
◮ Combination of theorem proving with automatic tools

◮ Proof of a FlexRay-like hardware interface
◮ Basis theorem for pervasive verification of distributed systems
◮ Functional correctness and timing analysis
◮ Bounds on crucial parameter of the bit clock synchronization

algorithm

Outline

Overall Verification Approach

FlexRay Hardware Interface

Clock Domain Crossing Model

Mixing Digital and Analog

Final Correctness Proof

Verification Method

Timing analysis

Complex Inductive Proof
(Isabelle)

Digital Properties

(NuSMV)

(Isabelle)

FPGA

HW Design

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed

(Isabelle)

Automatic

Translation

Correctness Theorem

Arbitrary long messages

Verification Method: CDC Model

Model relevant phenomena
- Metastability
- Clock drift/jitter
Main Theorem
- Bit transfer correctness

Timing analysis

Complex Inductive Proof
(Isabelle)

Digital Properties

(NuSMV)

(Isabelle)

FPGA

HW Design

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed

(Isabelle)

Automatic

Translation

Correctness Theorem

Arbitrary long messages

Verification Method: Mixed A/D World

- Hardware models (discrete time)

Link between

Main Theorem
- Bit transfer correctness
- Mixed A/D conclusion

- CDC model (dense time)

Automatic tools apply
- NuSMV in Isabelle (Tverdyshev)

FPGA

Digital Properties

(NuSMV)

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed

(Isabelle)

Automatic

Translation

Correctness Theorem

Arbitrary long messages
Timing analysis

Complex Inductive Proof
(Isabelle)

HW Design

(Isabelle)

Verification Method: HW Design

- Isabelle model
FlexRay Hardware

- FPGA model

Timing analysis

Complex Inductive Proof
(Isabelle)

Digital Properties

(NuSMV)

(Isabelle)

FPGA

HW Design

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed

(Isabelle)

Automatic

Translation

Correctness Theorem

Arbitrary long messages

Verification Method: Final Inductive Proof

- (2) Synchronization hardware

- Message length (byte number)
Induction

- (1) and (2) not independent

Property about
- (1) State machine

FPGA

Complex Inductive Proof
(Isabelle)

Digital Properties

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed

(Isabelle)

Automatic

Translation

(NuSMV)

Correctness Theorem

Arbitrary long messages
Timing analysis

HW Design

(Isabelle)

Outline: HW Design

- Isabelle model
FlexRay Hardware

- FPGA model

Timing analysis

Complex Inductive Proof
(Isabelle)

Digital Properties

(NuSMV)

(Isabelle)

FPGA

HW Design

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed

(Isabelle)

Automatic

Translation

Correctness Theorem

Arbitrary long messages

FlexRay Architecture: Protocol Overview

done = 0

b[0]BSS[0] BSS[1]

idle

start

done = 1

FSS
TSS

FES[1]FES[0]

b[7]

b[1]
b[2]

b[3]

b[4]
b[5]b[6]

◮ Receiver and sender implements the same control automaton

◮ Frames follow the following format

f (m) = 〈TSS,FSS,BSS,m[0], . . . ,BSS,m[l − 1],FES〉

◮ Byte synchronization sequence BSS = 10

◮ Each bit sent 8 times + majority voting

FlexRay Architecture: Bit Clock Synchronization

reset

BSS[1] byte BSS[0] BSS[1]

reset

BSS[0]

0 0 0 0 0 0 0 0

2 3 4 5

1 1 1 1 1 11 1

2 3 4 56 7 8 1 6 6 7 8 12 1 6 7 8 1 2 6 7 8 1.....

.....

Sample
count cnt

VotedVal
0

3 4 5 2 3 4 5

1 1 1 1 1 11 1 0 0 0 0 0 0 0 0

◮ Strobe when cnt = 5

◮ cnt reset to 2 at synchronization edges

◮ Values 5 and 2 fixed by specification document

(Figure 3-8 page 243 of Protocol Specification v2.1)

Bit Clock Synchronization and Metastability

reset

BSS[1] byte BSS[0] BSS[1]

reset

BSS[0]

0 0 0 0 0 0 0

2 3 4 5 2 3 4 51 6 7 8 1 2 6 7 8

1 1 1 1 1 11 1

metastability

6 7 8 1 6 6 7 8 1

0

.....

.....

Sample
count cnt

VotedVal
0 0 0 0 0 0 01

drift

2 3 4 5 2 3 4 5

1 1 1 1 1 11 1 0

Objective: always sample (roughly) in the middle

◮ Potential metastability when sampling around falling or rising
edges

◮ Misalignment due to clock drift

◮ Spikes (ignored)

◮ Roughly in the middle = 8 bits - first - last = 6 bits

Receiver Input Stage

v t
?
6= v t−1

rb.we
R

1

b7
strobe

idle ∨ BSS[1]

inpr R R SH[3:0]

5-Maj1

v

BYTE[7:0]

sync

cnt
?
= xxx

Receiver Input Stage

2-stage synchronizer (metastability)

v t
?
6= v t−1

rb.we
R

1

b7
strobe

idle ∨ BSS[1]

inpr R R SH[3:0]

5-Maj1

v

BYTE[7:0]

sync

cnt
?
= xxx

Reg. ♯2 never metastable
Non-det. to 0 or 1

Receiver Input Stage

5-majority voting

v t
?
6= v t−1

rb.we
R

1

b7
strobe

idle ∨ BSS[1]

inpr R R SH[3:0]

5-Maj1

v

BYTE[7:0]

sync

cnt
?
= xxx

Receiver Input Stage

bit clock
synchronization

v t
?
6= v t−1

rb.we
R

1

b7
strobe

idle ∨ BSS[1]

inpr R R SH[3:0]

5-Maj1

v

BYTE[7:0]

sync

cnt
?
= xxx

sync high on falling edges
only if state idle or BSS[1]
disable strobing
reset counter (to yyy)

Receiver Input Stage

strobing
mechanism

v t
?
6= v t−1

rb.we
R

1

b7
strobe

idle ∨ BSS[1]

inpr R R SH[3:0]

5-Maj1

v

BYTE[7:0]

sync

cnt
?
= xxx

strobe high when cnt = xxx

Store v in BYTE

clock control automaton

Outline: CDC Model

Model relevant phenomena
- Metastability
- Clock drift/jitter
Main Theorem
- Bit transfer correctness

Timing analysis

Complex Inductive Proof
(Isabelle)

Digital Properties

(NuSMV)

(Isabelle)

FPGA

HW Design

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed

(Isabelle)

Automatic

Translation

Correctness Theorem

Arbitrary long messages

General Assumptions

◮ 3-valued logic:
◮ 0, 1 for “low” and “high” voltages
◮ Ω for any other voltage

◮ Time represented by nonnegative reals (R≥0)

◮ Signals are functions from time to {0, 1,Ω}

◮ Transition from low (high) to high (low) via Ω
◮ In particular, output signal of registers
◮ Consequence: metastable states when sampling Ω

◮ Clocks represented by their period τ
◮ Date of edge ♯c on unit u noted eu(c) = c · τu

◮ Edges have no width

Relating Senders and Receivers

cy(ξ, c)

es (c + 16)

BSS[0]FSS BSS[1]TSSFES

es (c)

synchronization sequence

sender side

receiver side

Ω x

(clock edges)

sender output

◮ Sender put x on bus at time es(c)

◮ ξ first “affected” (receiver) cycle (to sample x or Ω)

Metastability

cy(ξ, c)

es (c + 16)

+β
ξ
c

BSS[0]FSS BSS[1]TSSFES

es (c)

synchronization sequence

sender side

receiver side

Ω x

(clock edges)

sender output

◮ Metastable state when sampling Ω,

◮ If cy (ξ, c) on Ω, then metastable state

◮ we may look one cycle later, at cy(ξ, c) + β
ξ
c :

◮ βξ
c = 0 if no metastable state at cy(ξ, c)

◮ βξ
c = 1 otherwise

Main Analog Theorem: Bit Transfer Correctness

0 0 0 0 0 0 0 ?

0 0 0 0 0 0 1 0

c c + 8

β = 0

β = 1

sender

receiver

◮ From sender cycle c

◮ Bit sent 8 times

◮ First affected cycle given:
◮ cy (ξ, c)

Theorem
◮ At least 7 samples on receiver side
◮ Possible shift of 1 cycle due to metastability

Clock Drift and Jitter

◮ Clocks not constant over time
◮ Drift bounded by percentage δ of reference period

1 − δ ≤
τu

τref

≤ 1 + δ

◮ Lemma
◮ Within π cycles, clocks cannot drift by more than 1 cycle
◮ From one known mark, next marks have 3 possible positions

cy(ξ + α + χ, c + α)

sender

receiver

+α

+α + χ

•α ≤ π

•χ ∈ {−1, 0, 1}

cy(ξ, c)

Outline: Mixed A/D World

- Hardware models (discrete time)

Link between

Main Theorem
- Bit transfer correctness
- Mixed A/D conclusion

- CDC model (dense time)

Automatic tools apply
- NuSMV in Isabelle (Tverdyshev)

FPGA

Digital Properties

(NuSMV)

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed

(Isabelle)

Automatic

Translation

Correctness Theorem

Arbitrary long messages
Timing analysis

Complex Inductive Proof
(Isabelle)

HW Design

(Isabelle)

CDC Model and Hardware Designs

y
Busx

Rr
clk r

receiversender

clks

Rs

ces

outs

1
inpr

◮ Goal: insert CDC model without modifying designs

CDC Model and Hardware Designs

y
Busx

Rr
clk r

receiversender

clks

Rs

ces

outs

1
inpr

◮ Goal: insert CDC model without modifying designs

◮ 2 digital transitions to “move” x to y

CDC Model and Hardware Designs

aRs aRr

1

y
Busx

Rr
clk r

receiversender

clks

Rs

ces

outs

1
inpr

◮ 2 digital transitions to “move” x to y

◮ One analog register function matched to one digital transition

◮ Designs not modified

Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x

Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x

Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x

Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x

Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x

Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x

Outline: Final Correctness Proof

- (2) Synchronization hardware

- Message length (byte number)
Induction

- (1) and (2) not independent

Property about
- (1) State machine

FPGA

Complex Inductive Proof
(Isabelle)

Digital Properties

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed

(Isabelle)

Automatic

Translation

(NuSMV)

Correctness Theorem

Arbitrary long messages
Timing analysis

HW Design

(Isabelle)

Correctness Theorem: Overview

◮ Functional Correctness
◮ For each byte, there exists one receiver cycle from which the

byte is correctly sampled
◮ This takes 79 to 82 cycles

Factor χ ∈ {−1, 0, +1}
Factor β ∈ {0, +1}

◮ Valid counter values: 1 ≤ (strobe - reset) ≤ 3

◮ Timing Analysis
◮ Derived from functional correctness

→ when receiver affected by first bit of last byte
→ number of cycles to finish transmission

◮ Bounded drift used to bound transmission time

Functional Correctness: Proof Overview

◮ Lemma 1: Traversing synchronization edges
◮ Transition from BSS[0] to end of BSS[1]
◮ Synchronization actually takes place

◮ Lemma 2: Sampling expected values
◮ Synchronization is good enough

◮ Proof Method
◮ CDC model: number of unknown inputs (systematic)
◮ Unknown inputs are assumptions for NuSMV (automatic)

Conclusion(1)

◮ General model of clock domain crossing
◮ Isabelle/HOL (Isar) theory (1,000 loc)
◮ Reusable for other proofs (e.g. scheduler)
◮ Fully parameterized

◮ Formal correctness proof of a hardware FlexRay-like interface
◮ First detailed gate-level proof: functionality + timing

∗ Valid values for crucial parameter

◮ Basis theorem for the verification of distributed stacks
◮ Theorem proving and automatic tools (like model checking)

Conclusion (2)

◮ Practical experience of hybrid verification
◮ Automatic tools were crucial
◮ Automatic tools must be extremely fast (seconds not minutes)
◮ Easy interaction with tactic based theorem prover

(Isabelle/Isar)
◮ Automatic tools are just new tactics

◮ Developing the model was the main effort
◮ Understanding of the details
◮ Deciding between wrong implementation or incomplete model
◮ Model can still be improved (spikes, faults)

◮ From the model the proof of the hardware is systematic
◮ General model: exactly where automatic tools apply
◮ From first proofs: systematic proof techniques
◮ Similar design verification effort would take few weeks
◮ ... but tedious: receiver proof > 8,000 loc

THANK YOU !!

Functional Correctness: Proof Overview

◮ Show counter-example for the following configuration
◮ Counter reset to 000
◮ Strobe at 100
◮ Strobing distance = 4 - 0 = 4

◮ FlexRay specifications
◮ Counter reset to 010
◮ Strobe at 101
◮ Strobing distance = 5 - 2 = 3

◮ Lemma 1: Traversing synchronization edges
◮ Transition from BSS[0] to end of BSS[1]
◮ Synchronization actually takes place

◮ Lemma 2: Sampling expected values
◮ Synchronization is good enough

Traversing Synchronization Edges

z = BSS[0]
cnt = 101

0 0 ?0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

VotedVal

v

0 0 0 0 0 0 00

◮ outs = sender output, v = voted bit, z = receiver state
◮ Delay of 4 cycles from majority voting

Traversing Synchronization Edges

cnt = 100
z = BSS[0]
cnt = 101

0 0 ?0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

VotedVal

v

0 0 0 0 0 0 00

◮ outs = sender output, v = voted bit, z = receiver state
◮ Delay of 4 cycles from majority voting
◮ Strobe at 100

Traversing Synchronization Edges

cnt = 011 cnt = 000 cnt = 100
sync

cnt = 100
z = BSS[0]
cnt = 101

0 0 ?0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

VotedVal

v

0 0 0 0 0 0 00

◮ At t + 13, sync is high (falling edge detected)

◮ Counter cnt reset to 000

◮ Strobe at t + 18

Traversing Synchronization Edges

cnt = 011 cnt = 000 cnt = 100
sync

cnt = 100
z = BSS[0]
cnt = 101

0 0 ?0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

VotedVal

v

0 0 0 0 0 0 00

◮ At t + 13, sync is high (falling edge detected)

◮ Counter cnt reset to 000

◮ Strobe at t + 18

◮ Lemma 1:
◮ 15 to 18 cycles from t to second strobing point
◮ Assuming drift, jitter and metastability

◮ Proof by NuSMV and Isabelle/HOL
◮ CDC model: 1 or 2 unknown inputs (systematic)
◮ Unknown inputs are assumptions for NuSMV proof (automatic)

Sampling Good Values: Counter-Example

sync

cnt = 011 cnt = 000 cnt = 100

cnt = 100cnt = 100

cnt = 100
cnt = 101
z = BSS[0]

0 0 0 0 0 00

0 0 ?0

b b b b b b

0 0 0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

?

cy(t + 16, b[0])

b

VotedVal

b

v

b b b

b b b b b b ?

0

Sampling Good Values: Counter-Example

cnt = 100
sync

cnt = 011 cnt = 000

cnt = 100cnt = 100

cnt = 100
cnt = 101
z = BSS[0]

0 0 ?0

b b b b b b ?
One sample is missing
Slow receiver

b b b b b b

0 0 0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

cy(t + 16, b[0])

b

VotedVal

b

v

b b b

0 0 0 0 0 0 00

Timing Correctness

...

idleν

slot0 slot1 . . . slotj slotn−1

roundi

tk tl

byteTSS FSS BSS BSS byte FES

80 · (m − 1) + 16 82 + 16 + ǫc

◮ Transmission correctness theorem:
◮ For all bytes b, there exists a receiver cycle ν from which b is

correctly sampled after 79 to 82 (receiver) cycles.
◮ Note: we have cy(ν, c + 80 · (m − 1) + 16)

◮ Timing theorem easily follows:
◮ Number of transmission cycles t = 32 + 80 · (m − 1) + 82 + ǫ
◮ Bound on maximum length of clock periods

τmax = (1 + δ) · τref

◮ Transmission time bounded by the following:

(32 + 80 · m + 2 + ǫ) · (1 + δ) · τref

	Overall Verification Approach
	FlexRay Hardware Interface
	Overview
	Bit Clock Synchronization
	Hardware Design

	Clock Domain Crossing Model
	General Assumptions
	From senders to receivers
	Metastability
	Main Theorems

	Mixing Digital and Analog
	Mixing Analog and Digital: Principles
	Mixing Analog and Digital: Example

	Final Correctness Proof
	Correctness Theorem
	Functional Correctness

	Conclusion
	Functional Correctness
	Timing Correctness

